Downstream synthetic route of 1,5-Diphenylpenta-1,4-dien-3-one

With the complex challenges of chemical substances, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one,belong chiral-oxygen-ligands compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO142,mainly used in chemical industry, its synthesis route is as follows.,538-58-9

General procedure: To a solution of dialkyl phosphite (0.01 mol) in anhydrous tetrahydrofuran (30 mL),maintained under a nitrogen atmosphere, sodium (0.02 g) was added and the mixture was stirred at roomtemperature until complete dissolution of sodium. Diarylideneketone 1 (0.01 mol) was then added and themixture heated under reflux for 4 h. After cooling, the reaction mixture was diluted with water (50 mL)and extracted with CHCl3 (2 ¡Á 25 mL). The organic phase was dried over Na2SO4 and concentrated undervacuum. The obtained residue was chromatographed on a silica gel column using a mixture of Et2O andhexane 9:1 as an eluent.

With the complex challenges of chemical substances, we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one,belong chiral-oxygen-ligands compound

Reference£º
Article; Lamouchi, Imen; Touil, Soufiane; Heterocycles; vol. 94; 5; (2017); p. 894 – 911;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The origin of a common compound about 538-58-9

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.

A common heterocyclic compound, 538-58-9,1,5-Diphenylpenta-1,4-dien-3-one, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 538-58-9

General procedure: In a general procedure, dibenzylidene acetone (1 mmol), N,N-dimethylbarbituric acid/barbituric acid/thiobarbituric acid(1 mmol) and 4 mL of ethanol:water (1:1) were taken in a 50 mL round-bottomed flask. 10 mol% of tetrabutyl ammonium bromide (TBAB) was added to the mixture, and the contents were stirred. The reaction mixture was refluxed and the progress of the reaction was monitored by TLC using ethyl acetate:petroleum ether (30:70) as eluent for disappearance of active methylene compounds. After completion of the reaction, the reaction mixture was allowed to cool to room temperature and diluted with water (5 mL). The solid obtained was filtered at pump and washed with water:ethanol (2:1). The product was recrystallized with ethanol. The products were characterized by their spectral data.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.

Reference£º
Article; Aggarwal, Komal; Khurana, Jitender M.; Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; vol. 143; (2015); p. 288 – 297;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

New downstream synthetic route of 538-58-9

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1,5-Diphenylpenta-1,4-dien-3-one,538-58-9,its application will become more common.

A common heterocyclic compound, 538-58-9,1,5-Diphenylpenta-1,4-dien-3-one, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 538-58-9

General procedure: General procedure (GP): Dienones 2a-m (0.25 mmol) and diamide 1a or 1b (74 mg, 0.25 mmol)were dissolved in 10 mL of dry CH2Cl2 in a 25 mL round bottom flask. DBU (3 eq, 114 mg, 0.75 mmol)was added to the reaction, which was subsequently stirred for 2-3 h. After the reaction was completedas determined by TLC, the crude material was subjected to column chromatography using ethylacetate/n-hexane (2:3) to give the desired compounds 3a-m.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1,5-Diphenylpenta-1,4-dien-3-one,538-58-9,its application will become more common.

Reference£º
Article; Al-Majid, Abdullah Mohammed; Islam, Mohammad Shahidul; Atef, Saleh; El-Senduny, Fardous F.; Badria, Farid A.; Elshaier, Yaseen A. M. M.; Ali; Barakat, Assem; Motiur Rahman; Molecules; vol. 24; 7; (2019);,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some scientific research about 1,5-Diphenylpenta-1,4-dien-3-one

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.

538-58-9 A common heterocyclic compound, 538-58-9,1,5-Diphenylpenta-1,4-dien-3-one, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

General procedure: A solution of N,N-dimethyl barbituric acid (1) (2 mmol) and diarylidene acetone derivatives (2a-p) (2 mmol) in 10 mL of dry CH2Cl2 were charged into a 50 mL round bottom flask under inert atmosphere. Et2NH (2.5 mmol) was then added to the reaction mixture and stirred at room temperature for up to 1.5-2 h, until TLC showed complete consumption of both the reactants. After completion of the reaction, the crude product was directly subjected to column chromatography, using 100-200 mesh silica gel and ethyl acetate/n-hexane (2:8, v/v) as an eluent to afford the pure products 3a-p. The solid products were further crystallized from a mixture of CHCl3/n-heptane. 4.2.1 2,4-Dimethyl-7,11-diphenyl-2,4-diazaspiro[5.5]undecane-1,3,5,9-tetraone (3a) Diarylidene acetone 2a (468.2 mg, 2 mmol) reacted with compound 1 (312.1 mg, 2 mmol) according to GP1 yielded white solid spiro-product 3a (765 mg, 1.96 mmol, 98%); mp 125-127 C; 1H NMR (400 MHz, CDCl3) delta: 2.59 and 2.63 (dd, 2H, J = 15.36 Hz, 4.40 Hz, CH2(e)), 2.85 (s, 3H, -NCH3), 3.01 (s, 3H, -NCH3), 3.72 (t, 2H, J = 14.7 Hz, CH2(a)), 3.99 and 4.03 (dd, 2H, J = 14.7 Hz, 4.40 Hz, CH), 7.06-7.08 (m, 4H, Ar-H), 7.21-7.26 (m, 6H, Ar-H); 13C NMR (100 MHz, CDCl3) delta: 27.98, 28.39, 42.99, 50.55, 60.95, 127.56, 128.69, 128.94, 137.17, 149.70, 169.04, 170.71, 208.29; IR (KBr, cm-1) numax = 2959, 2925, 1716, 1675, 1484, 1422, 1381, 1125, 755, 706; [Anal. Calcd for C23H22N2O4: C, 70.75; H, 5.68; N, 7.17; Found: C, 70.69; H, 5.65; N, 7.01]; LC/MS (ESI, m/z): [M+], calculated 390.21, C23H22N2O4 found 390.16; CCDC-1007513.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.

Reference£º
Article; Barakat, Assem; Islam, Mohammad Shahidul; Al-Majid, Abdullah Mohammed; Ghabbour, Hazem A.; Fun, Hoong-Kun; Javed, Kulsoom; Imad, Rehan; Yousuf, Sammer; Choudhary, M. Iqbal; Wadood, Abdul; Bioorganic and Medicinal Chemistry; vol. 23; 20; (2015); p. 6740 – 6748;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some scientific research about 538-58-9

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1,5-Diphenylpenta-1,4-dien-3-one,538-58-9,its application will become more common.

A common heterocyclic compound, 538-58-9,1,5-Diphenylpenta-1,4-dien-3-one, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 538-58-9

General procedure: A mixture of malononitrile (2a) (66 mg, 1 mmol), dibenzylideneacetone (6a) (234 mg, 1 mmol), tributylphosphine (25 mL, 0.1 mmol), and anhydrous CH2Cl2 (5.0 mL) was magnetically stirred in a flask under nitrogen atmosphere at room temperature. The reaction progress was monitored by thin layer chromatography (TLC) until the starting materials were completely consumed. Then, the reaction mixture was diluted with H2O (10 mL) and extracted with Et2O (3×10 mL), the organic phase was washed with brine (10 mL), dried over anhydrous Na2SO4. After the removal of the solvent under reduced pressure, the residue was subjected to chromatography on a silica gel (200-300 mesh) column using petroleum ether/ethyl acetate (4:1) as eluent to afford 7a (286 mg, 95% yield) as a light yellow solid (mp 170-171 C).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1,5-Diphenylpenta-1,4-dien-3-one,538-58-9,its application will become more common.

Reference£º
Article; Xu, Da-Zhen; Zhan, Ming-Zhe; Huang, You; Tetrahedron; vol. 70; 2; (2014); p. 176 – 180;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The origin of a common compound about 538-58-9

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.

A common heterocyclic compound, 538-58-9,1,5-Diphenylpenta-1,4-dien-3-one, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 538-58-9

.) Synthesis According to Inorganic Synthesis, 28, 110 (1990)The synthesis is carried out under inert gas. 2.096 g (11.73 mmol) PdCl2 and 0.686 g (11.73 mmol) NaCl are provided under argon, and 59 ml of methanol are added.Next the reaction mixtures is stirred over night for 18 hours in the sealed flask. Then the dark red-brown solution is filtered through a G3 frit under argon. No residue is evident on the frit.The filtrate solution is transferred to a 500 ml three-necked flask using 293 ml of methanol, and heated to 60 C. At this temperature, 8.563 g (36.54 mmol) dibenzylidene acetone are added under argon. Then, the addition of 17.595 g (214.49 mmol) sodium acetate is made.A voluminous, reddish solid precipitates. Subsequently, the reaction mixture is cooled to room temperature. The product is removed by filtration and washed with 300 ml of methanol, 300 ml of water, and 300 ml of acetone. The product is dried in vacuo at room temperature.Appearance: dark-brown solidSolubility Test:1.00 g of the product are dissolved in 150 ml of chloroform and stirred at room temperature for 30 minutes. The solution is then aspirated through a membrane filter. The filter is washed with 30 ml of water and 30 ml of acetone and subsequently dried over night at 45 C. in vacuo. The residue accounts for 1.4%.Result:m(product): 6.4 gYield with respect to Pd: 94CHCl3-insoluble ingredients: 1.4

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.

Reference£º
Patent; W.C. Heraeus GmbH; US7999126; (2011); B2;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

New downstream synthetic route of 538-58-9

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1,5-Diphenylpenta-1,4-dien-3-one,538-58-9,its application will become more common.

A common heterocyclic compound, 538-58-9,1,5-Diphenylpenta-1,4-dien-3-one, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 538-58-9

Bis(dibenzylideneacetone)palladium(0) (Pd(dba)2)was synthesized by reducing PdCl2 with methanol in thepresence of sodium acetate and dba [30]. Dibenzylideneacetone(3.4500 g, 1.472 ¡Á 10-2 mol), sodium acetatetrihydrate (4.8525 g, 3.568 ¡Á 10-2 mol), and methanol(113 mL) were placed in a two-neck round-bottomflask. The reaction mixture was stirred at 50C for 45-60 min to obtain a solution, and PdCl2 (0.7875 g,4.434 ¡Á 10-3 mol) was added. The resulting solutionwas stirred in an argon atmosphere at 40C for 4 h.This yielded a dark violet precipitate of the Pd(dba)2complex, which was collected on a fritted glass filterunder argon, washed with water and acetone, andvacuum-dried (30C/2-3 Torr) for 3 h. The productyield was 2.4 g. (94% of the theoretical yield); m =152C. According to the literature, m of thePd(dba)2 complex is 152C [31]. UV spectra:Pd(dba)2, 525 nm (d ? d* transition, epsilon525 =6400 L mol-1 cm-1); non-coordinated dba, 325 nm(n ? pi* transition, epsilon325 = 33540 L mol-1 cm-1).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1,5-Diphenylpenta-1,4-dien-3-one,538-58-9,its application will become more common.

Reference£º
Article; Skripov; Belykh; Sterenchuk; Akimov; Tauson; Schmidt; Kinetics and Catalysis; vol. 58; 1; (2017); p. 34 – 45; Kinet. Katal.; vol. 58; 1; (2017); p. 36 – 48,13;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The origin of a common compound about 1,5-Diphenylpenta-1,4-dien-3-one

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.

A common heterocyclic compound, 538-58-9,1,5-Diphenylpenta-1,4-dien-3-one, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 538-58-9

General procedure: To a solution of dialkyl phosphite (0.01 mol) in anhydrous tetrahydrofuran (30 mL),maintained under a nitrogen atmosphere, sodium (0.02 g) was added and the mixture was stirred at roomtemperature until complete dissolution of sodium. Diarylideneketone 1 (0.01 mol) was then added and themixture heated under reflux for 4 h. After cooling, the reaction mixture was diluted with water (50 mL)and extracted with CHCl3 (2 ¡Á 25 mL). The organic phase was dried over Na2SO4 and concentrated undervacuum. The obtained residue was chromatographed on a silica gel column using a mixture of Et2O andhexane 9:1 as an eluent.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.

Reference£º
Article; Lamouchi, Imen; Touil, Soufiane; Heterocycles; vol. 94; 5; (2017); p. 894 – 911;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

A new synthetic route of 1,5-Diphenylpenta-1,4-dien-3-one

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.

A common heterocyclic compound, 538-58-9,1,5-Diphenylpenta-1,4-dien-3-one, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 538-58-9

General procedure: A mixture of malononitrile (2a) (66 mg, 1 mmol), dibenzylideneacetone (6a) (234 mg, 1 mmol), tributylphosphine (25 mL, 0.1 mmol), and anhydrous CH2Cl2 (5.0 mL) was magnetically stirred in a flask under nitrogen atmosphere at room temperature. The reaction progress was monitored by thin layer chromatography (TLC) until the starting materials were completely consumed. Then, the reaction mixture was diluted with H2O (10 mL) and extracted with Et2O (3×10 mL), the organic phase was washed with brine (10 mL), dried over anhydrous Na2SO4. After the removal of the solvent under reduced pressure, the residue was subjected to chromatography on a silica gel (200-300 mesh) column using petroleum ether/ethyl acetate (4:1) as eluent to afford 7a (286 mg, 95% yield) as a light yellow solid (mp 170-171 C).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.

Reference£º
Article; Xu, Da-Zhen; Zhan, Ming-Zhe; Huang, You; Tetrahedron; vol. 70; 2; (2014); p. 176 – 180;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

New downstream synthetic route of 538-58-9

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1,5-Diphenylpenta-1,4-dien-3-one,538-58-9,its application will become more common.

A common heterocyclic compound, 538-58-9,1,5-Diphenylpenta-1,4-dien-3-one, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 538-58-9

General procedure: To a stirred solution of indole 1a (59 mg, 0.5 mmol) and chalcone 2a (115 mg, 0.55 mmol) in MeCN (2.0mL) was added a solution of Br2 (0.00077 mL) in MeCN (0.5 mL), and the mixture was stirred for 7.0 h at 50 C. After 1a was consumed, as indicated by TLC, the reaction mixture was quenched with saturated aqueous Na2S2O3 (0.2mL) and water (10.0 mL), and extracted with CH2Cl2 three times. The residue obtained after evaporation of the solvent was purified by column chromatography on silica gel (petroleum ether-ethyl acetate = 30:1, v/v) to afford adduct 3a as a white solid (151 mg, 93% yield).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1,5-Diphenylpenta-1,4-dien-3-one,538-58-9,its application will become more common.

Reference£º
Article; Liang, Deqiang; Li, Xiangguang; Zhang, Wanshun; Li, Yanni; Zhang, Mi; Cheng, Ping; Tetrahedron Letters; vol. 57; 9; (2016); p. 1027 – 1030;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate