New downstream synthetic route of 24621-61-2

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,(S)-Butane-1,3-diol,24621-61-2,its application will become more common.

A common heterocyclic compound, 24621-61-2,(S)-Butane-1,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 24621-61-2

e) (S)-4-Triisopropylsilanvloxv-butan-2-olTriethylamine (1.173 g) is added dropwise to a solution of 2.246 g triisopropylchlorosilaneand 1 g (S)-(+)-1,3-butanediol in 15 ml of dry tetrahydrofuran. The mixture is stirred for 48hours at room temperature, then is diluted with 400 ml of tert-butyl methyl ether and washedrespectively with 30 mM N HCI, 50 ml water and 50 ml of brine. The organic phase is dried(sodium sulphate), filtered and evaporated to dryness. The residue is purified by means offlash column chromatography (SiO2 60F) to provide the title compound as a colorless oil.Rf = 0.31 (EtOAc- heptane 1:5).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,(S)-Butane-1,3-diol,24621-61-2,its application will become more common.

Reference£º
Patent; SPEEDEL EXPERIMENTA AG; WO2006/5741; (2006); A2;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some scientific research about (S)-Butane-1,3-diol

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

24621-61-2 A common heterocyclic compound, 24621-61-2,(S)-Butane-1,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

Example 4 : (R)-2-(3-{3-[[2-Chloro-3-(trifluoromethyl) benzyl] (2,2- diphenylethyl) amino]-1-methyl-propoxy}-phenyl) acetic acid methyl ester ; a) Toluene-4-sulfonic acid- (S)-3-hydroxy-butyl ester; To a stirring solution of (S)-1, 3-butanediol (1.0 g, 0.01 mmol) and triethylamine (1.39 g, 0.014 mmol) in dichloromethane (10 mL) at-20C was added dropwise p-toluenesulfonyl chloride and the mixture was stirred for 2 h. The reaction mixture was then warmed to RT and stirred overnight. The reaction mixture was poured into cold H2O (20 mL), and extracted three times with dichloromethane. The organic extracts were then washed with brine. The organic layer was dried over sodium sulfate, filtered, and concentrated in vacuo to give 2.6 g (96% yield) of title compound as an oil. MS (ESI) 244.8 (M+). The crude tosylat was used without further purification., 24621-61-2

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

Reference£º
Patent; SMITHKLINE BEECHAM CORPORATION; WO2003/82802; (2003); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

A new synthetic route of (S)-Butane-1,3-diol

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

A common heterocyclic compound, 24621-61-2,(S)-Butane-1,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 24621-61-2

To a solution of commercial available (s)-3-hydroxy butanol (10 g, Aldrich) in 50 mL of DMF, TsOH (20 mg, catalytic) and MeOPhCH (OMe) 2 (24 g) were added. After 3h at 35 C on a rotovap with slight vacuum, it was cooled and quenched with aq. Sat. NaHC03. The mixture was extracted with EtOAc (3x). The organic layers were washed with brine (2x), dried and concentrated. The crude product was evaporated with toluene (3x). [0230] The crude product was dissolved in 700 mL of CH2CI2. At 0 C, DIBAL-H solution (200 mL, 1.0 M, excess) was added. The reaction was warmed to room temperature overnight. Then it was quenched with methanol (50 mL), sat. Na2S04 at 0 C. The mixture was diluted with Et20 (1. 5L). After stirred for 5h, it was filtered through a pad of celite. The filtrate was concentrated to give an oil. The oil was purified on silica gel with Hexanes/EtOAc, 10: 1,6 : 1,3 : 1, and 1: 1 to give 24 g of desired product, 343-YW-203, 24621-61-2

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

Reference£º
Patent; EISAI CO. LTD.; WO2003/76424; (2003); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

New downstream synthetic route of 4254-15-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,(S)-Propane-1,2-diol,4254-15-3,its application will become more common.

A common heterocyclic compound, 4254-15-3,(S)-Propane-1,2-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 4254-15-3

Under an atmosphere of argon, trifluoromethanesulfonic acid (485 muEpsilon; 822 mg; 5.47 mmol; 5.0 eq) was added dropwise at 0-5¡ãC (ice/brine bath) to a solution of l-[2-chloro-4-(4-chlorophenoxy)phenyl]-2-(5- fluoroimidazol-l-yl)ethanone (400 mg ; 1.09 mmol) and (2S)-propane-l,2-diol (3.33 g; 43.8 mmol; 40.0 eq) in anhydrous toluene (3.0 mL). The resulting mixture was allowed to warm up to room temperature, then refluxed for 20h. Thereafter the reaction mixture was allowed to cool down to room temperature, diluted with ethyl acetate, washed with saturated aqueous sodium bicarbonate, the combined organic layers were – – dried (MgSO i) and concentrated to dryness in vacuo. The residue was purified by chromatography over silica gel, eluted with a mixture of dichloromethane/methanol (100:0 to 90: 10). Evaporation of the solvents in vacuo afforded 271 mg (54percent) of l-[[2-[2-chloro-4-(4-chlorophenoxy)phenyl]-4-methyl-l,3-dioxolan-2- yl]methyl]-5-fluoro-imidazole (approx. 59:41 mixture of diastereoisomers) as a colourless solid. MS (ESI): 423.1 ([M+H]+)

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,(S)-Propane-1,2-diol,4254-15-3,its application will become more common.

Reference£º
Patent; BAYER CROPSCIENCE AKTIENGESELLSCHAFT; BAYER AKTIENGESELLSCHAFT; COQUERON, Pierre-Yves; BERNIER, David; GENIX, Pierre; MILLER, Ricarda; NAUD, Sebastien; WITTROCK, Sven; BRUNET, Stephane; KENNEL, Philippe; MEISSNER, Ruth; WACHENDORFF-NEUMANN, Ulrike; GOeRTZ, Andreas; (104 pag.)WO2018/60088; (2018); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

A new synthetic route of 4254-15-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

A common heterocyclic compound, 4254-15-3,(S)-Propane-1,2-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 4254-15-3

The four (4) step reaction sequence starting from 103-1 and 103-2 (prepared as shown from S-(+)-1,2-propanediol (103-0)) provided Boc-T103a in a very good overall yield of 85%. The alternatively protected analogue Ddz-T103a was prepared using the same procedure with an overall yield of 55% [1.4 g Ddz(2RMe)opy18 was obtained starting from 1 g (5.8 mmol) of 103-1]. Synthesis of the Boc-T103b stereoisomer proceeds similarly, but starting from R-(-)-1,2-propanediol.TLC: Rf: 0.3 (100% EtOAc)

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

Reference£º
Patent; Tranzyme Pharma Inc.; US2008/194672; (2008); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

New downstream synthetic route of 4254-15-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,(S)-Propane-1,2-diol,4254-15-3,its application will become more common.

A common heterocyclic compound, 4254-15-3,(S)-Propane-1,2-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 4254-15-3

Triethylamine was added to methylene chloride solution of (2S)-propane-1,2-diol, and then methylene chloride solution of p-toluenesulfonyl chloride was added thereto at -20C and stirred at room temperature for 18 hours to obtain (2S)-2-hydroxypropyl-4-methylbenzene sulfonate. MS(+): 231

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,(S)-Propane-1,2-diol,4254-15-3,its application will become more common.

Reference£º
Patent; Astellas Pharma Inc.; EP1619185; (2006); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The origin of a common compound about 24621-61-2

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

A common heterocyclic compound, 24621-61-2,(S)-Butane-1,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 24621-61-2

Example 4 : (R)-2-(3-{3-[[2-Chloro-3-(trifluoromethyl) benzyl] (2,2- diphenylethyl) amino]-1-methyl-propoxy}-phenyl) acetic acid methyl ester ; a) Toluene-4-sulfonic acid- (S)-3-hydroxy-butyl ester; To a stirring solution of (S)-1, 3-butanediol (1.0 g, 0.01 mmol) and triethylamine (1.39 g, 0.014 mmol) in dichloromethane (10 mL) at-20C was added dropwise p-toluenesulfonyl chloride and the mixture was stirred for 2 h. The reaction mixture was then warmed to RT and stirred overnight. The reaction mixture was poured into cold H2O (20 mL), and extracted three times with dichloromethane. The organic extracts were then washed with brine. The organic layer was dried over sodium sulfate, filtered, and concentrated in vacuo to give 2.6 g (96% yield) of title compound as an oil. MS (ESI) 244.8 (M+). The crude tosylat was used without further purification.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

Reference£º
Patent; SMITHKLINE BEECHAM CORPORATION; WO2003/82802; (2003); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The origin of a common compound about 24621-61-2

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

A common heterocyclic compound, 24621-61-2,(S)-Butane-1,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 24621-61-2

Step E (2-TOLUENE-4-SULFONIC acid 3-hydroxy-butyl ester; A solution of (S)- (+)-1, 3-butanediol (9.5 g, 0.105 mol) and Et3N (12.8 g, 0.126 mol) in CH2C12 (200 mL) is treated with dibutyltin oxide (0.52 g, 2.08 mmol) and THENP-TOLUENESULFONYL chloride (20.09 g, 0.105 mol) is added as a solid in portions over 30 minutes at rt. The resultant mixture is stirred at rt for 17 hours under N2. The reaction is quenched with 1 N HC1 (50 mL), diluted with water and extracted with EtOAc. The organic layer is dried (NA2SO4), and the solvent is removed in vacuo to afford crude product that is absorbed on silica gel and purified by flash chromatography using 98/2 CH2C12/ACN (to elute the unreactedp-toluenesulfonyl chloride) and then 2/1 hexanes/acetone to afford 18. 67 g (73%) the title compound. Rf== 0.23, Rf bis-tosylate = 0.53 (98/2 CH2C12/ACN).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

Reference£º
Patent; ELI LILLY AND COMPANY; WO2005/19151; (2005); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some scientific research about (S)-Butane-1,3-diol

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

24621-61-2 A common heterocyclic compound, 24621-61-2,(S)-Butane-1,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

S- (+)-1, 3-butanediol (96 mg, 1.065 mmol) in 3 ml of pyridine was cooled in an ice-water bath and 4,4′-dimethoxytrityl chloride (430 mg, 1.27 mmol) was added thereto. The resulting mixture was stirred for 6 hours at room temperature. 10 ml of 5% NAHCO3 was added thereto and the resulting solution was extracted with 15 ml of ethyl acetate. The organic layer was dried over MGS04 and evaporated under a reduced pressure. The resulting yellow liquid residue was purified by silica gel column chlomatography (eluent-ethyl acetate: hexane = 1: 3) to obtain the title compound (401 mg, 1.02 mmol) in a yield of 96%. Rf= 0.3 (ethyl acetate: Hexane = 1 : 2); IR (NACI) nu (cm-1) 3462, 3059, 3034, 2959, 2927, 2848,2835, 1607,1508, 1250; 1H NMR (Acetone-d6) delta 7.49 (br, 1H), 7.46 (br, 1H), 7.36-7. 18 (m, 7H), 6.86 (t, 2H, J=2. 6Hz), 6.84 (t, 2H, J=2.6Hz), 3.93 (br, 1H), 3.73 (s, 6H), 3. 50 (br, 1H), 3.28-3. 14 (m, 2H), 1.73 (m, 2H), 1. 11 (d, 3H, J=6. 2Hz) ; 13C-NMR (75.5 MHz, Acetone-d6) delta 158. 1, 145. 3, 136. 1, 136.0, 129.5, 127. 6, 127.2, 126. 1, 112.5, 85. 4, 64. 2, 60. 6, 54. 2, 39.0, 23.1; MS-FAB (m/z): [M] + calcd for C25H28O4, 392; found 392.; [alpha] 21D = +17. 6 (c 1.0, CHCl3), 24621-61-2

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

Reference£º
Patent; POSTECH FOUNDATION; WO2004/63208; (2004); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some scientific research about (S)-Butane-1,3-diol

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

24621-61-2 A common heterocyclic compound, 24621-61-2,(S)-Butane-1,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

Example 25 (4-{(R)-3-[(2-CHLORO-3-TRIFLUOROMETHYL-BENZYL)-2, 2-DIPHENYLETHYL-AMINO]-BUTOXY}-INDOL-1- YL) acetic acid hydrochloride salt a) Toluene-4-sulfonic acid (S)-3-hydroxy-butyl ester To a solution of (S)-1, 3-butanediol (2.0 g, 22.0 MMOL) and Et3N (4.6 mL, 33.0 MMOL) in CH2CI2 (20 mL) at-20 C was added p-toluenesulfonyl chloride (4.46 g, 23.0 MMOL) and the reaction mixture was then warmed to RT and stirred overnight. The reaction mixture was washed with H20 and brine, dried over NA2SO4, filtered, and concentrated to give the title compound as a yellow oil (5.2 G, 96%)a) Toluene-4-sulfonic acid (S)-3-hydroxy-butyl ester To a solution of (S)-1, 3-butanediol (2.0 G, 22.0 MMOL) and Et3N (4.6 mL, 33.0 MMOL) in CH2CI2 (20 mL) at-20 C was added p-toluenesulfonyl chloride (4.46 g, 23.0 MMOL) and the reaction mixture was then warmed to RT and stirred overnight. The reaction mixture was washed with H20 and brine, dried over NA2SO4, filtered, and concentrated to give the title compound as a yellow oil (5.2 G, 96%)

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

Reference£º
Patent; SMITHKLINE BEECHAM CORPORATION; WO2005/23196; (2005); A2;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate