New learning discoveries about 4254-15-3

The chemical industry reduces the impact on the environment during synthesis,4254-15-3,(S)-Propane-1,2-diol,I believe this compound will play a more active role in future production and life.

4254-15-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (S)-Propane-1,2-diol, cas is 4254-15-3,the chiral-oxygen-ligands compound, it is a common compound, a new synthetic route is introduced below.

Example 33 : (2R, 75R)-2-[(l-Aminoisoquinolin-6-yl)amino]-8-fluoro-7- {[(25)-l- hydroxypropan-2-yl]oxy } -4, 15,20-trimethyl- 13 -oxa-4, 1 1- diazatricyclo[14.2.2.16, 10]henicosa-l(18),6,8, 10(21), 16, 19-hexaene-3, 12-dione; trifluoroacetic acid [00356] To a solution of (s)-(+)-l,2-propanediol (2.0 g, 26.3 mmol) in DMF (5 mL) was added TBS-C1 (5.94 g, 39.4 mmol) and imidazole (2.147 g, 31.5 mmol). The reaction was stirred at 25 ¡ãC for 18 h. The reaction mixture was partitioned between ethyl acetate and sat. ammonium chloride. The organic phase was washed with sat. ammonium chloride and brine, dried (MgS04) and concentrated in vacuo. The crude product was purified by flash chromatography to give 33A (4.0 g, 80percent yield) as a colorless oil. 33B: (5)-Benzyl 2-((l-((tert-butyldimethylsilyl)oxy)propan-2-yl)oxy)-3-fluoro-5- nitrobenzyl(methyl)carbamate [00357] To a solution of 27B (400 mg, 1.197 mmol), 33A (251 mg, 1.316 mmol) and triphenylphosphine (345 mg, 1.316 mmol) in THF (10 mL) at 0 ¡ãC, was added DIAD (0.256 mL, 1.316 mmol) dropwise. The reaction mixture was allowed to slowly warm to rt and stirred for 16 h, then was concentrated. The crude product was purified by flash chromatography (0 to 40percent ethyl acetate/hexanes) to give 33B (577 mg, 1.139 mmol, 95percent yield) as colorless oil. MS (ESI) m/z: 507.1 [M+1]+. H MR (400 MHz, chloroform-d) delta ppm 7.78 – 7.94 (2 H, m) 7.27 – 7.43 (5 H, m) 5.17 (2 H, d, J=20.1 Hz) 4.46 – 4.74 (3 H, m) 3.65 – 3.81 (2 H, m) 2.97 (3 H, d, J=15.8 Hz) 1.31 (3 H, t, J=7.0 Hz) 0.81 (9 H, d, J=7.0 Hz) -0.05 – 0.04 (6 H, m) rotamers. 33C: (S)-4-((l-((tert-Butyldimethylsilyl)oxy)propan-2-yl)oxy)-3-fluoro-5- ((methylamino)methyl)aniline [00358] To a degassed solution of 33B (573 mg, 1.131 mmol) in MeOH (10 mL), was added 10percent Pd-C (50 mg, 0.047 mmol). The mixture was evacuated and flushed with H2 (3X), then was stirred under an atmosphere of H2 for 8 h. The mixture was filtered and concentrated to give 33C (382 mg, 1.115 mmol, 99percent yield) as a pale brown oil. MS (ESI) m/z: 343.1 [M+l]+. PI MR (400 MHz, chloroform-d) delta ppm 6.40 (1 H, d, J=1.8 Hz) 6.33 (1 H, dd, J=12.5, 2.8 Hz) 4.20 (1 H, sxt, J=5.7 Hz) 3.62 – 3.79 (4 H, m) 3.53 (2 H, br. s.) 2.40 (3 H, s) 1.25 (3 H, d, J=6.3 Hz) 0.89 (9 H, s) 0.05 (6 H, s). 33D: tert-Butyl N- {6-[({[(5-amino-2- { [(25)- l-[(tert-butyldimethylsilyl)oxy]propan-2- yl]oxy } -3 -fluorophenyl)methyl](methyl)carbamoyl} ( {4-[(2R)- 1 -hydroxypropan-2-yl]-3 – methylphenyl} )methyl)amino]isoquinolin- 1 -yl} -N-[(tert-butoxy)carbonyl]carbamate [00359] To Intermediate 5 (100 mg, 0.515 mmol), Intermediate 1 (185 mg, 0.515 mmol), and glyoxylic acid monohydrate (47.4 mg, 0.515 mmol), were added DMF (6.00 mL) and acetonitrile (6 mL). The mixture was stirred at 80 ¡ãC for 1 h, then was cooled to rt. To the mixture were added sequentially 33C (201 mg, 0.587 mmol), DMF (6.00 mL), TEA (0.215 mL, 1.546 mmol) and BOP (251 mg, 0.567 mmol). The reaction mixture was stirred at rt for 1 h, then was diluted with H20 and extracted with EtOAc (3X). The extract was washed with brine, dried ( a2S04) and concentrated. The crude product was purified by flash chromatography (1 to 15percent MeOH/methylene chloride) to give 33D (422 mg, 0.474 mmol, 92percent yield) as an orange foam. MS (ESI) m/z: 890.3 [M+l]+. H MR: complicated due to presence of diastereomers and amide rotamers. Example 33 [00360] To a solution of 33D (417 mg, 0.468 mmol) in dichloromethane (10 mL) and acetonitrile (5 mL) at 0 ¡ãC, was added phosgene (20percent in toluene, 0.243 mL, 0.492 mmol) dropwise. The mixture was stirred at 0 ¡ãC for 20 min, then was removed from the cooling bath and bubbled with Ar for 20 min. This mixture was added dropwise via a syringe pump into a solution of TEA (0.392 mL, 2.81 mmol) in dichloromethane (190 mL) over 5 h. The reaction mixture was allowed to stir at rt for 11 h, and then concentrated. The crude product was purified by flash chromatography (1 to 15percent MeOH/methylene chloride) to give a mixture of diastereoisomers. The diastereomers were separated by a prep chiral HPLC (R,R-Whelk-0 column 21.1 x 250 mm). The desired fractions were combined and concentrated. The residue was treated with TFA (4 mL) for 15 min. The reaction mixture was concentrated and purified by prep HPLC to give Example 33 (52.9 mg, 0.074 mmol, 31.4percent yield) white solid. MS (ESI) m/z: 602.2 [M+l]+. NMR (400 MHz, methanol-d4) delta ppm 8.05 (1 H, d, J=9.3 Hz) 7.64 (1 H, dd, J=7.8, 1.8 Hz) 7.44 (1 H, d, J=7.8 Hz) 7.31 (1 H, d, J=7.0 Hz) 7.18 – 7.23 (2 H, m) 6.91 (1 H, d, J=7.3 Hz) 6.83 (1 H, d, J=2.3 Hz) 6.53 (1 H, dd, J=12.4, 2.4 Hz) 5.73 (1 H, s) 5.66 (1 H, br. s.) 5.37 (1 H, d, J=17.1 Hz) 4.65 (1 H, t, J=11.0 Hz) 4.27 – 4.38 (1 H, m, J=5.7, 5.7, 5.7, 5.7, 5.4 Hz) 4.06 (1 H, d, J=17.3 Hz) 3.96 (1 H, dd, J=10.8, 4.3 Hz) 3.63 (2 H, d, J=4.8 Hz) 3.43 – 3.55 (1 H, m) 3.27 (3 H, s) 2.34 (3 H, s) 1.30 (3 H, d, J=7.0 Hz) 1.27 (3 H, d, J=6.3 Hz). Analytical HPLC (low pH, 254 nM): Sunfir…

The chemical industry reduces the impact on the environment during synthesis,4254-15-3,(S)-Propane-1,2-diol,I believe this compound will play a more active role in future production and life.

Reference£º
Patent; BRISTOL-MYERS SQUIBB COMPANY; ZHANG, Xiaojun; GLUNZ, Peter W.; PRIESTLEY, Eldon Scott; JOHNSON, James, A.; WURTZ, Nicholas, Ronald; LADZIATA, Vladimir; WO2013/184734; (2013); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Analyzing the synthesis route of 24621-61-2

24621-61-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,24621-61-2 ,(S)-Butane-1,3-diol, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to chiral-oxygen-ligands compound, name is (S)-Butane-1,3-diol, and cas is 24621-61-2, its synthesis route is as follows.

EXAMPLE INEL SynthesisPreparation of (3S)-1-p-Toluenesulfonyloxy-3-triethylsilyloxy-butane (2); To a stirred solution of the (S)-(+)-1,3-butanediol 1 (1 g, 11.1 mmol), DMAP (30 mg, 0.25 mmol) and Et3N (4.6 mL, 3.33 g, 33 mmol) in anhydrous methylene chloride (20 mL)p-toluenesulfonyl chloride (2.54 g, 13.3 mmol) was added at 0 C. The reaction mixture was stirred at 4 C. for 22 h. Methylene chloride was added and the mixture was washed with water, dried (Na2SO4) and concentrated under reduced pressure. A residue was chromatographed on silica gel with hexane/ethyl acetate (8:2, then 1:1) to afford the tosylate (2.31 g, 85% yield) as colorless oil.To a stirred solution of the tosylate (2.31 g, 9.5 mmol) and 2,6-lutidine (1.2 mL, 1.12 g, 10.5 mmol) in anhydrous methylene chloride (15 mL) triethylsilyl trifluoromethanesulfonate (2.1 mL, 2.51 g, 9.5 mmol) was added at -50 C. The reaction mixture was allowed to warm to room temperature (4 h) and stirring was continued for additional 20 h. Methylene chloride was added and the mixture was washed with water, dried (Na2SO4) and concentrated under reduced pressure. A residue was chromatographed on silica gel with hexane/ethyl acetate (97:3) to afford the product 2 (2.71 g, 80% yield) as a colorless oil:[alpha]D+18.0 (c 2.38, CHCl3); 1H NMR (400 MHz, CDCl3) delta7.77 (2H, d, J=8.2 Hz, o-HTs), 7.33 (2H, d, J=8.2 Hz, m-HTs), 4.10 (2H, t, J=6.1 Hz, 1-H2), 3.90 (1H, m, 3-H), 2.43 (3H, s, McTs), 1.72 (2H, m, 2-H2), 1.10 (3H, d, J=6.2 Hz, 4-H3), 0.88 (9H, t, J=8.0 Hz, 3¡ÁSiCH2CH3), 0.50 (6H, q, J=8.0 Hz, 3¡ÁSiCH2CH3); 13C NMR (100 MHz) delta 144.62 (s, p-CTs), 133.03 (s, i-CTs), 129.72 (d, m-CTs), 127.82 (d, o-CTs), 67.78 (t, C-1), 64.46 (d, C-3), 38.47 (t, C-2), 23.82 (q, C-4), 21.52 (q, MeTs), 6.71 (q, SiCH2CH3), 4.77 (t, SiCH2CH3); MS (EI) m/z 359 (5, MH+), 329 (87, M+ -C2H5), 259 (100), 233 (54), 197 (50), 179 (74), 163 (40), 149 (48), 135 (38), 115 (53), 91 (71); exact mass calculated for C15H25O4SSi (M+ -C2H5) 329.1243, found 329.1239.

24621-61-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,24621-61-2 ,(S)-Butane-1,3-diol, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; WISCONSIN ALUMNI RESEARCH FOUNDATION; US2007/191316; (2007); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some tips on (S)-Propane-1,2-diol

The chemical industry reduces the impact on the environment during synthesis,4254-15-3,(S)-Propane-1,2-diol,I believe this compound will play a more active role in future production and life.

4254-15-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (S)-Propane-1,2-diol, cas is 4254-15-3,the chiral-oxygen-ligands compound, it is a common compound, a new synthetic route is introduced below.

Zu einer Loesung von 1.50 g (19.7 mmol) S-1, 2-Propandiol in 15 ml Dichlormethan werden 2.75 ml (19.7 mmol) Triethylamin, 0. 10 g (0. 8 MMOL) 4-N, N-Dimethylaminopyridin und 2. 97 G (19.7 mmol) tert. -Butyldimethylsilylchlorid gegeben. Die Reaktionsmischung wird fuer 16 h bei Raumtemperatur geruehrt. Anschliessend wird mit Dichlormethan verduennt und je zweimal mit Wasser, gesaettigter Ammoniumchlorid-Loesung und gesaettigter Natriumhydrogencarbonat-Loesung gewaschen. Die organische Phase wird ueber Natriumsulfat getrocknet und im Vakuum vom Loesungsmittel befreit. Der Rueckstand wird ohne weitere Reinigung in der naechsten Stufe eingesetzt. Ausbeute : 2.55 g, 80% Reinheit (54% d. Th.) GC/MS (Methode 6) : RT = 2.62 min., M/Z = 191 (M+H)+.

The chemical industry reduces the impact on the environment during synthesis,4254-15-3,(S)-Propane-1,2-diol,I believe this compound will play a more active role in future production and life.

Reference£º
Patent; BAYER HEALTHCARE AG; WO2004/80952; (2004); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Introduction of a new synthetic route about (S)-Propane-1,2-diol

4254-15-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,4254-15-3 ,(S)-Propane-1,2-diol, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to chiral-oxygen-ligands compound, name is (S)-Propane-1,2-diol, and cas is 4254-15-3, its synthesis route is as follows.

Under an atmosphere of argon, trifluoromethanesulfonic acid (485 muEpsilon; 822 mg; 5.47 mmol; 5.0 eq) was added dropwise at 0-5¡ãC (ice/brine bath) to a solution of l-[2-chloro-4-(4-chlorophenoxy)phenyl]-2-(5- fluoroimidazol-l-yl)ethanone (400 mg ; 1.09 mmol) and (2S)-propane-l,2-diol (3.33 g; 43.8 mmol; 40.0 eq) in anhydrous toluene (3.0 mL). The resulting mixture was allowed to warm up to room temperature, then refluxed for 20h. Thereafter the reaction mixture was allowed to cool down to room temperature, diluted with ethyl acetate, washed with saturated aqueous sodium bicarbonate, the combined organic layers were – – dried (MgSO i) and concentrated to dryness in vacuo. The residue was purified by chromatography over silica gel, eluted with a mixture of dichloromethane/methanol (100:0 to 90: 10). Evaporation of the solvents in vacuo afforded 271 mg (54percent) of l-[[2-[2-chloro-4-(4-chlorophenoxy)phenyl]-4-methyl-l,3-dioxolan-2- yl]methyl]-5-fluoro-imidazole (approx. 59:41 mixture of diastereoisomers) as a colourless solid. MS (ESI): 423.1 ([M+H]+)

4254-15-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,4254-15-3 ,(S)-Propane-1,2-diol, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; BAYER CROPSCIENCE AKTIENGESELLSCHAFT; BAYER AKTIENGESELLSCHAFT; COQUERON, Pierre-Yves; BERNIER, David; GENIX, Pierre; MILLER, Ricarda; NAUD, Sebastien; WITTROCK, Sven; BRUNET, Stephane; KENNEL, Philippe; MEISSNER, Ruth; WACHENDORFF-NEUMANN, Ulrike; GOeRTZ, Andreas; (104 pag.)WO2018/60088; (2018); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some tips on 24621-61-2

24621-61-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,24621-61-2 ,(S)-Butane-1,3-diol, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to chiral-oxygen-ligands compound, name is (S)-Butane-1,3-diol, and cas is 24621-61-2, its synthesis route is as follows.

General procedure: (R)-Ethyl 3-hydroxybutyrate (2.1 g, 16 mmol) and (R)-1,3 butanediol(1.0 g, 11 mmol) were combined and incubated with CAL-B (0.2 g,400 U) at 80 torr without solvent in a rotary evaporator. The reaction was monitored by withdrawing 5 muL portions of the reaction mixture,which were dissolved in 1.0 mL methanol for analysis by GC-MS. Upon consumption of the diol, the reaction mixture was taken up in dichloromethane,the beads were filtered and washed, and the solventremoved by rotary evaporation. Excess (R)-ethyl 3-hydroxybutyratewas removed by heating to 60 deg C under reduced pressure (1 torr).The residue was suspended in ethyl acetate, treated with activated carbon and filtered to yield (R)-3-hydroxybutyryl-(R)-3-hydroxybutyrateas a clear oil (1.2 g, 62%).

24621-61-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,24621-61-2 ,(S)-Butane-1,3-diol, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Budin, Noah; Higgins, Erin; DiBernardo, Anthony; Raab, Cassidy; Li, Chun; Ulrich, Scott; Bioorganic Chemistry; vol. 80; (2018); p. 560 – 564;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Brief introduction of 24621-61-2

The chemical industry reduces the impact on the environment during synthesis,24621-61-2,(S)-Butane-1,3-diol,I believe this compound will play a more active role in future production and life.

24621-61-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (S)-Butane-1,3-diol, cas is 24621-61-2,the chiral-oxygen-ligands compound, it is a common compound, a new synthetic route is introduced below.

e) (S)-4-Triisopropylsilanvloxv-butan-2-olTriethylamine (1.173 g) is added dropwise to a solution of 2.246 g triisopropylchlorosilaneand 1 g (S)-(+)-1,3-butanediol in 15 ml of dry tetrahydrofuran. The mixture is stirred for 48hours at room temperature, then is diluted with 400 ml of tert-butyl methyl ether and washedrespectively with 30 mM N HCI, 50 ml water and 50 ml of brine. The organic phase is dried(sodium sulphate), filtered and evaporated to dryness. The residue is purified by means offlash column chromatography (SiO2 60F) to provide the title compound as a colorless oil.Rf = 0.31 (EtOAc- heptane 1:5).

The chemical industry reduces the impact on the environment during synthesis,24621-61-2,(S)-Butane-1,3-diol,I believe this compound will play a more active role in future production and life.

Reference£º
Patent; SPEEDEL EXPERIMENTA AG; WO2006/5741; (2006); A2;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Downstream synthetic route of (S)-Propane-1,2-diol

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 4254-15-3, (S)-Propane-1,2-diol

4254-15-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (S)-Propane-1,2-diol, cas is 4254-15-3,the chiral-oxygen-ligands compound, it is a common compound, a new synthetic route is introduced below.

Step 1 To (S)-propane diol (4.89 g, 64.2 mmol) in DCM (20 ml_) at-20 C (CO2/ ethylene glycol bath) was added TEA (11.2 mL, 80.3 mmol) followed by p-toluenesulfonyl chloride (12.3 g, 64.3 mmol) in DCM (26 mL) dropwise over 30 minutes. Allowed the cold bath to expire while stirring for 26 h. Added DCM and washed the reaction with 1 N HCI, water, and brine. Dried (MgSO4) the organic layer, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (0-40% EtOAc/Hex over 40 minutes) to provide the tosylate (8.37 g, 36 .4 mmol).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 4254-15-3, (S)-Propane-1,2-diol

Reference£º
Patent; SCHERING CORPORATION; WO2009/5646; (2009); A2;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

New learning discoveries about 24621-61-2

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (S)-Butane-1,3-diol, 24621-61-2

24621-61-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (S)-Butane-1,3-diol, cas is 24621-61-2,the chiral-oxygen-ligands compound, it is a common compound, a new synthetic route is introduced below.

S- (+)-1, 3-butanediol (96 mg, 1.065 mmol) in 3 ml of pyridine was cooled in an ice-water bath and 4,4′-dimethoxytrityl chloride (430 mg, 1.27 mmol) was added thereto. The resulting mixture was stirred for 6 hours at room temperature. 10 ml of 5% NAHCO3 was added thereto and the resulting solution was extracted with 15 ml of ethyl acetate. The organic layer was dried over MGS04 and evaporated under a reduced pressure. The resulting yellow liquid residue was purified by silica gel column chlomatography (eluent-ethyl acetate: hexane = 1: 3) to obtain the title compound (401 mg, 1.02 mmol) in a yield of 96%. Rf= 0.3 (ethyl acetate: Hexane = 1 : 2); IR (NACI) nu (cm-1) 3462, 3059, 3034, 2959, 2927, 2848,2835, 1607,1508, 1250; 1H NMR (Acetone-d6) delta 7.49 (br, 1H), 7.46 (br, 1H), 7.36-7. 18 (m, 7H), 6.86 (t, 2H, J=2. 6Hz), 6.84 (t, 2H, J=2.6Hz), 3.93 (br, 1H), 3.73 (s, 6H), 3. 50 (br, 1H), 3.28-3. 14 (m, 2H), 1.73 (m, 2H), 1. 11 (d, 3H, J=6. 2Hz) ; 13C-NMR (75.5 MHz, Acetone-d6) delta 158. 1, 145. 3, 136. 1, 136.0, 129.5, 127. 6, 127.2, 126. 1, 112.5, 85. 4, 64. 2, 60. 6, 54. 2, 39.0, 23.1; MS-FAB (m/z): [M] + calcd for C25H28O4, 392; found 392.; [alpha] 21D = +17. 6 (c 1.0, CHCl3)

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (S)-Butane-1,3-diol, 24621-61-2

Reference£º
Patent; POSTECH FOUNDATION; WO2004/63208; (2004); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Analyzing the synthesis route of 4254-15-3

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (S)-Propane-1,2-diol, 4254-15-3

4254-15-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (S)-Propane-1,2-diol, cas is 4254-15-3,the chiral-oxygen-ligands compound, it is a common compound, a new synthetic route is introduced below.

To a stirred solution of 68 (S)-2-propanediol (1.00g, 13.14mmol) in 14 dichloromethane/69 pyridine (10:10 V/V) at -25C under argon was added dropwise 70 p-toluenesulfonyl chloride (2.51g, 13.14mmol) dissolved in 10mL of CH2Cl2 over a period of 2h. The mixture was stirred at -25C for 4h and then at room temperature for further 2h. After the reaction was completed, 30mL of CH2Cl2 were added and the mixture was shaken successively with ice-cold water, 1M 10mL 71 aqueous HCl, 15mL 72 water, saturated NaHCO3, and water, respectively. The organic phase was dried over MgSO4 and filtered and the solvent was removed under reduced pressure. The residue was purified by chromatography over silica gel using toluene/EtOAc (5/1) to give 73 product (1.70g, 56%) as white crystals. M.p: 33-35C, [alpha]D25=-12.05 (c 1, CHCl3). 1H NMR (CDCI3, ppm): delta 7.80 (d, 2H, J=8.0Hz, of OTs), 7.36 (d, 2H, J=8.0Hz, of OTs), 3.97-4.05 (m, 2H, -CHCH3-+CH2OTs (a)), 3.83-3.88 (m, 1H, CH2OTs (b)), 2.45 (s, 3H, -CH3 of OTs), 2.39 (s, 1H, OH), 1.15 (d, J=6.4Hz, 3H, -CHCH3), assignment was based on the 1H-13C HETCOR and 1H-1H COSY spectra

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (S)-Propane-1,2-diol, 4254-15-3

Reference£º
Article; Meric, Nermin; Kayan, Cezmi; Guerbuez, Nevin; Karakaplan, Mehmet; Binbay, Nil Ertekin; Aydemir, Murat; Tetrahedron Asymmetry; vol. 28; 12; (2017); p. 1739 – 1749;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Share a compound : 24621-61-2

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (S)-Butane-1,3-diol, 24621-61-2

24621-61-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (S)-Butane-1,3-diol, cas is 24621-61-2,the chiral-oxygen-ligands compound, it is a common compound, a new synthetic route is introduced below.

Preparation of (3S)-1-p-Toluenesulfonyloxy-3-triethylsilyloxy-butane (2b); To a stirred, solution of the(S)-(+)-1,3-butanediol 1b (1 g, 11.1 mmol), DMAP (30 mg, 0.25 mmol) and Et3N (4.6 mL, 3.33 g, 33 mmol) in anhydrous methylene chloride (20 mL) p-toluenesulfonyl chloride (2.54 g, 13.3 mmol) was added at 0 C. The reaction mixture was stirred at 4 C. for 22 h. Methylene chloride was added and the mixture was washed with water, dried (Na2SO4) and concentrated under reduced pressure. A residue was chromatographed on silica gel with hexane/ethyl acetate (8:2, then 1:1) to afford the tosylate (2.31 g, 85% yield) as a colorless oil.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (S)-Butane-1,3-diol, 24621-61-2

Reference£º
Patent; WISCONSIN ALUMNI RESEARCH FOUNDATION; US2012/283228; (2012); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate