This type of reactivity has quickly become one of the cornerstones of modern catalysis .In a patent, Recommanded Product: 19132-06-0, name is (2S,3S)-Butane-2,3-diol, belongs to chiral-oxygen-ligands compound, introducing its new discovery. Recommanded Product: 19132-06-0
Glycerol dehydrogenase (GDH, EC 1.1.1.6, from Enterobacter aerogenes or Cellulomonas sp.) catalyzes the interconversion of analogues of glycerol and dihydroxyacetone.Its substrate specificity is quite different from than of horse liver alcohol dehydrogenase (HLADH), yeast alcohol dehydrogenase, and other alcohol dehydrogenases used in enzyme-catalyzed organic synthesis and is thus a useful new enzymic catalyst for the synthesis of enantiomerically enriched and isotopically labeled organic molecules.This paper illustrates synthetic applications of GDH as a reduction catalyst by the enantioselective reduction of 1-hydroxy-2-propanone and 1-hydroxy-2-butanone to the corresponding R 1,2-diols (ee = 95-98percent). (R)-1,2-Butanediol-2-d1 was prepared by using formate-d1 as the ultimate reducing agent.Comparison of (R)-1,2-butanediol prepared by reduction of 1-hydroxy-2-butanone enzymatically and with actively fermenting bakers’ yeast indicated than yield and enantiomeric purity were similar by the two procedures.Reactions proceeding in the direction of substrate oxidation usually suffer from slow rates and incomplete conversions due to product inhibition.The kinetic consequences of product inhibition (competitive, noncompetitive, and mixed) for practical synthetic applications of GDH, HLADH, and other oxidoreductases are analyzed.In general, product inhibition seems the most serious limitation to the use of these enzymes as oxidation catalysts in organic synthesis.
One of the oldest and most widely used commercial enzyme inhibitors is aspirin, Recommanded Product: 19132-06-0, which selectively inhibits one of the enzymes involved in the synthesis of molecules that trigger inflammation. you can also check out more blogs about 19132-06-0
Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate