Electric Literature of 19132-06-0, In homogeneous catalysis, catalysts are in the same phase as the reactants. A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes. 19132-06-0, Name is (2S,3S)-Butane-2,3-diol, molecular formula is C4H10O2. belongs to chiral-oxygen-ligands compounds. In a Article,once mentioned of 19132-06-0
A number of strains of Lactobacillus spp. from foods were screened for their ability to convert meso-2,3-butanediol into 2-butanol. Only three strains of L. brevis transformed the meso-diol into the secondary alcohol. These strains as well as the others unable to metabolize meso-2,3-butanediol exhibited the capacity to hydrogenate 2-butanone to 2-butanol. In both types of lactobacilli, an inverse relationship was observed between the diol or ketone concentration and the abundance of the R form of 2-butanol. This fact has been interpreted in terms of a co-occurrence of two dehydrogenases, both acting on the ketone with different kinetic parameters and opposite enantioselectivities. These results represent a further support to the assumption that 2-butanol present in distillates originates from the enzymatic activity of lactobacilli growing on mashes and give the most likely explanation of the enantiomeric excess of (R)-2-butanol generally found in distillates.
Note that a catalyst decreases the activation energy for both the forward and the reverse reactions and hence accelerates both the forward and the reverse reactions.Electric Literature of 19132-06-0, you can also check out more blogs about19132-06-0
Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate