Simple exploration of C17H14O

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 538-58-9

Application of 538-58-9, In homogeneous catalysis, catalysts are in the same phase as the reactants. A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes. 538-58-9, Name is 1,5-Diphenylpenta-1,4-dien-3-one, molecular formula is C17H14O. belongs to chiral-oxygen-ligands compounds. In a Article,once mentioned of 538-58-9

Supported palladium nanoparticles as switchable catalyst for aldehyde conjugate/s and acetate ester syntheses from alcohols

Polymer-supported Pd(0) (Pd@PS) nanoparticles (NPs) were explored as a switchable catalyst for oxidative aldehyde conjugate/s (AC/s) and acetate esters (AEs) syntheses from alcohols. Using the same substrates, the catalyst in the presence of oxygen and K2CO3 participated in AC/s synthesis, and in the presence of traces of air and NaOtBu, unusual AEs products were obtained.

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 538-58-9

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate