Simple exploration of 616-43-3

If you want to learn more about this compound(3-Methyl-1H-pyrrole)Category: chiral-oxygen-ligands, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(616-43-3).

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 616-43-3, is researched, SMILESS is CC1=CNC=C1, Molecular C5H7NJournal, Chemistry of Materials called Steric and Electronic Effects in Methyl-Substituted 2,2′-Bipyrroles and Poly(2,2′-Bipyrrole)s: Part II. Theoretical Investigation on Monomers, Author is Gatti, Carlo; Frigerio, Giovanni; Benincori, Tiziana; Brenna, Elisabetta; Sannicolo, Franco; Zotti, Gianni; Zecchin, Sandro; Schiavon, Gilberto, the main research direction is pyrrole bipyrrole substituted steric electronic effect.Category: chiral-oxygen-ligands.

The effects of N- and Cβ-Me substitution in pyrrole and 2,2′-bipyrrole were investigated through ab initio calculations and Atoms in Mols. anal. of the resulting wave functions. Replacement of a hydrogen atom with a Me group in pyrroles lowers the ionization potential, with substitution at C3 being more efficient than N-substitution because of the larger release of π population to the ring in the former case. Full geometry optimization at RHF/6-31G** level and as a function of the torsion angle τ between two adjacent rings demonstrates that the increasing loss of planarity in the 2,2′-bipyrrole, N,N’-dimethyl-2,2′-bipyrrole, and 3,3′-dimethyl-2,2′-bipyrrole series, adversely affects the pos. contributions expected from Me substitution. An intramol. interaction energy model shows that the greater anti-planarization energy of N,N’-dimethyl-2,2′-bipyrrole, as compared to 3,3′-dimethyl-2,2′-bipyrrole, is due to the larger decrease in the stabilizing electrostatic term and to the larger increase in the destabilizing nonbonding contribution which occurs at τ = 0° in the former. Calculations on the corresponding monocations and anal. of new conductivity measures on substituted poly(2,2′-bipyrrole)s suggest that the ease in achieving local chain planarity in doped polypyrroles should be more closely correlated to the anti-planarization energies of the charged monomers rather than to anti-planarization energies of the neutral monomers.

If you want to learn more about this compound(3-Methyl-1H-pyrrole)Category: chiral-oxygen-ligands, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(616-43-3).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate