Reference of 538-58-9, Enzyme inhibitors cause a decrease in the reaction rate of an enzyme-catalyzed reaction by binding to a specific portion of an enzyme and thus slowing or preventing a reaction from occurring. In a document type is Article, and a compound is mentioned, 538-58-9, Name is 1,5-Diphenylpenta-1,4-dien-3-one, introducing its new discovery.
Masked silylene complexes Cp?(IXy-H)(H)RuSiH2R (R = Mes (3) and Trip (4); IXy = 1,3-bis(2,6-dimethylphenyl)imidazol-2-ylidene; “IXy-H” is the deprotonated form of IXy) exhibit metallosilylene-like (LnM-Si-R) reactivity, as observed in reactions of nonenolizable ketones, enones, and tosyl azides, to give unprecedented silaoxiranyl, oxasilacyclopentenyl, and silaiminyl complexes, respectively. Notably, these silicon-containing complexes are derived from the primary silanes MesSiH3 and TripSiH3 via activation of all three Si-H bonds. DFT calculations suggest that the mechanism of formation for the silaoxiranyl complex Cp?(IXy)(H)2Ru-Si(OCPh2)Trip (6) involves coordination of benzophenone to a silylene silicon atom, followed by a single-electron transfer in which Si-bonded, non-innocent benzophenone accepts an electron from the reactive, electron-rich ruthenium center. Importantly, this electron transfer promotes an unusual 1,2-hydrogen migration to the resulting, more electron-deficient ruthenium center via a diradicaloid transition state.
Do you like my blog? If you like, you can also browse other articles about this kind. Thanks for taking the time to read the blog about 538-58-9
Reference£º
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate