You could be based in a university, combining chemical research with teaching; or in a public-sector research center, helping to ensure national healthcare provision keeps pace with new discoveries. Reference of 538-58-9,
Two different enantioselective organocatalytic cascade reactions to form new sulfur-containing spirocyclic scaffolds are described. In the first approach, benzothiophen-2-one and enals react in the presence of a secondary amine catalyst through a Michael/Michael/Aldol sequence to afford the final spiro-cyclohexene carbaldehydes in good yields (up to 68 %) and with excellent selectivities [20:1 diastereomeric ratio (dr), up to 99 % ee]. In the second approach, the double Michael addition of benzothiophen-2-one to aromatic dienones with primary amine catalysis produces the corresponding spiro-cyclohexanones in good yields (up to 76 %) and with moderate-to-high selectivities (up to 12:1 dr, up to 90 % ee). Moreover, the use of N-phenylrhodanine as the bis-nucleophile for these reactions also allowed the formation of the corresponding spirocyclic adducts. Benzothiophenone and N-phenylrhodanine were successfully used as bis-nucleophiles in two enantioselective organocatalytic cascades. Their reactions with enals and dienones allowed the formation of new sulfur-containing spirocyclic scaffolds in good yields and with high selectivities. Copyright
The design and synthesis of related molecules that are more effective, more selective, and less toxic than aspirin are important objectives of biomedical research.Keep reading other articles of 538-58-9! Reference of 538-58-9
Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate