COA of Formula: C5H7N. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: 3-Methyl-1H-pyrrole, is researched, Molecular C5H7N, CAS is 616-43-3, about Electrochemical properties and conductivity of poly(3-methylpyrrole/ClO4). Author is Gonzalez-Tejera, M. J.; Sanchez de la Blanca, E.; Carrillo, I.; Redondo, M. I.; Raso, M. A.; Tortajada, J.; Garcia, M. V..
Electrosynthesis of conducting poly(3-methylpyrrole) was carried out at fixed potentials of 0.5 and 0.6 V in a NaClO4 MeCN solution The electrochem. behavior of doped-polymer films was analyzed considering the influence of the neg. and pos. potential limits as well as the scan rate on the voltammograms recorded in MeCN. A mechanism for the redox processes is proposed. Polymer morphol. was examined by SEM, which reveals a cauliflower and compact texture depending on the potential of synthesis and deposition time. Kinetic of conductivity decay with aging time is dependent of exp(-t1/2) with a characteristic time of the degradation process around 20 days.
I hope my short article helps more people learn about this compound(3-Methyl-1H-pyrrole)COA of Formula: C5H7N. Apart from the compound(616-43-3), you can read my other articles to know other related compounds.
Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate