The transformation of simple hydrocarbons into more complex and valuable products via catalytic C–H bond functionalisation has revolutionised modern synthetic chemistry. An article , which mentions Safety of (S)-Butane-1,3-diol, molecular formula is C4H10O2. The compound – (S)-Butane-1,3-diol played an important role in people’s production and life., Safety of (S)-Butane-1,3-diol
The hydrogenation of carboxylic acid derivatives at room temperature was investigated. With a mixed Rh/Pt oxide (Nishimura catalyst), low to medium activity was observed for various alpha-amino and alpha-hydroxy esters. At 100 bar hydrogen pressure and 10% catalysts loading, high yields of the desired amino alcohols and diols were obtained without racemization. The most suitable alpha-substituents were NH2, NHR, and OH, whereas beta-NH2 were less effective. Usually, aromatic rings were also hydrogenated, but with the free bases of amino acids as substrates, some selectivity was observed. No reaction was found for alpha-NR2, alpha-OR, and unfunctionalized esters; acids and amides were also not reduced under these conditions. A working hypothesis for the mode of action of the catalyst is presented.
One of the oldest and most widely used commercial enzyme inhibitors is aspirin, which selectively inhibits one of the enzymes involved in the synthesis of molecules that trigger inflammation. you can also check out more blogs about24621-61-2 . Safety of (S)-Butane-1,3-diol
Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate