Discovery of (S)-Propane-1,2-diol

One of the oldest and most widely used commercial enzyme inhibitors is aspirin, name: (S)-Propane-1,2-diol, which selectively inhibits one of the enzymes involved in the synthesis of molecules that trigger inflammation. you can also check out more blogs about 4254-15-3

One of the major reasons for studying chemical kinetics is to use measurements of the macroscopic properties of a system, name: (S)-Propane-1,2-diol, such as the rate of change in the concentration of reactants or products with time.In a article, mentioned the application of 4254-15-3, Name is (S)-Propane-1,2-diol, molecular formula is C3H8O2

Functional characterization of a stereospecific diol dehydrogenase, FucO, from Escherichia coli: Substrate specificity, pH dependence, kinetic isotope effects and influence of solvent viscosity

FucO, (S)-1,2-propanediol oxidoreductase, from Escherichia coli is involved in the anaerobic catabolic metabolism of l-fucose and l-rhamnose, catalyzing the interconversion of lactaldehyde to propanediol. The enzyme is specific for the S-enantiomers of the diol and aldehyde suggesting stereospecificity in catalysis. We have studied the enzyme kinetics of FucO with a spectrum of putative alcohol and aldehyde substrates to map the substrate specificity space. Additionally, for a more detailed analysis of the kinetic mechanism, pH dependence of catalysis, stereochemistry in hydride transfer, deuterium kinetic isotope effect of hydride transfer and effect of increasing solvent viscosity were also analyzed. The outcome of this study can be summarized as follows: FucO is highly stereospecific with the highest E-value measured to be 320 for the S-enantiomer of 1,2-propanediol. The enzyme is strictly regiospecific for oxidation of primary alcohols. The enzyme prefers short-chained (2-4 carbons) substrates and does not act on bulkier compounds such as phenyl-substituted alcohols. FucO is an ‘A-side’ dehydrogenase transferring the pro-R-hydrogen of NADH to the aldehyde substrate. The deuterium KIEs of kcat and k cat/KM were 1.9 and 4.2, respectively, illustrating that hydride transfer is partially rate limiting but also that other reaction steps contribute to rate limitation of catalysis. Combining the KIE results with the observed effects of increasing medium viscosity proposed a working model for the kinetic mechanism involving slow, rate limiting, product release and on-pathway conformational changes in the enzyme-nucleotide complexes.

One of the oldest and most widely used commercial enzyme inhibitors is aspirin, name: (S)-Propane-1,2-diol, which selectively inhibits one of the enzymes involved in the synthesis of molecules that trigger inflammation. you can also check out more blogs about 4254-15-3

Reference£º
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate