Application In Synthesis of cis-4-Aminocyclohexane carboxylic acid. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: cis-4-Aminocyclohexane carboxylic acid, is researched, Molecular C7H13NO2, CAS is 3685-23-2, about Highly selective preparation of trans-4-aminocyclohexanecarboxylic acid from cis-isomer over Raney nickel catalyst. Author is Gobolos, Sandor; Banka, Zoltan; Toth, Zoltan; Szammer, Janos; Margitfalvi, Jozsef L..
4-Amino-benzoic acid was hydrogenated to 4-aminocyclohexanecarboxylic acid over alumina supported 5 weight% Ru and Rh catalysts. Complete ring saturation was achieved in 2 weight % NaOH-H2O at 80-100 °C, 10 MPa H2, and 5 h however, the ratio of trans/cis stereoisomers of the product was only between 1/3-1/1. The raw reaction mixture was further processed in the presence of a com. Raney nickel catalyst at 130°C, 100 bar H2 for 5 h. In this alkali-mediated isomerization the trans/cis isomer ratio was 7/3. The cis isomer was isolated by fractional crystallization, and then reacted on Raney nickel catalysts in 2%NaOH-H2O at 120-140°C, 1 MPa H2 for 5 h to obtain the trans isomer with a yield of ca. 70%. The two-step synthesis resulted in trans-4-aminocyclohexanecarboxylic acid with a yield above 90%. Catalytic tests were performed in a high-throughput reactor system equipped with 16 mini autoclaves.
As far as I know, this compound(3685-23-2)Application In Synthesis of cis-4-Aminocyclohexane carboxylic acid can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.
Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate