Our Top Choice Compound: 56413-95-7

Although many compounds look similar to this compound(56413-95-7)Recommanded Product: 5,6-Dichloropyrazine-2,3-dicarbonitrile, numerous studies have shown that this compound(SMILES:N#CC1=NC(Cl)=C(Cl)N=C1C#N), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Recommanded Product: 5,6-Dichloropyrazine-2,3-dicarbonitrile. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile, is researched, Molecular C6Cl2N4, CAS is 56413-95-7, about The synthesis and characterization of metal-free, unsymmetrical azaphthalocyanines with hydroxy groups and their complex formation with pyridine. Author is Kopecky, Kamil; Zimcik, Petr; Novakova, Veronika; Miletin, Miroslav; Musil, Zbynek; Stribna, Jana.

Three, unsym. metal-free azaphthalocyanines (AzaPc) were prepared using the statistical condensation of 5,6-bis(diethylamino)-pyrazine-2,3-dicarbonitrile (A) and the pyrazinedicarbonitrile (B) substituted with alkylamine chains bearing one or two hydroxy groups. The desired AAAB type, metal-free compounds were isolated, purified and characterized; the compounds contain one or two hydroxy groups that can be modified with suitable ligands. The mechanism leading to the unusual formation of a new morpholine ring during the preparation of some pyrazinedicarbonitriles is explained. Metal-free AzaPcs form a proton-transfer complex with two mols. of pyridine, this complex formation being accompanied by a change of solution color from purple to blue. The complex is formed directly with two mols. of pyridine, one on either side of the macrocycle. The rate constants of this process were found to be of the order ∼10-4 s-1; the rate of complex formation was not the same for all compounds and may depend on the AzaPc structure. The influence of hydroxy groups on the rate constant was not confirmed.

Although many compounds look similar to this compound(56413-95-7)Recommanded Product: 5,6-Dichloropyrazine-2,3-dicarbonitrile, numerous studies have shown that this compound(SMILES:N#CC1=NC(Cl)=C(Cl)N=C1C#N), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Chemical Research in 56413-95-7

After consulting a lot of data, we found that this compound(56413-95-7)Synthetic Route of C6Cl2N4 can be used in many types of reactions. And in most cases, this compound has more advantages.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 56413-95-7, is researched, SMILESS is N#CC1=NC(Cl)=C(Cl)N=C1C#N, Molecular C6Cl2N4Journal, Journal of Photochemistry and Photobiology, A: Chemistry called Synthesis and comparison of photodynamic activity of alkylheteroatom substituted azaphthalocyanines, Author is Zimcik, Petr; Miletin, Miroslav; Kostka, Miroslav; Schwarz, Jan; Musil, Zbynek; Kopecky, Kamil, the main research direction is synthesis photodynamic activity alkyl heteroatom substitution azaphthalocyanine.Synthetic Route of C6Cl2N4.

Optimal reaction conditions were developed for synthesis of octakis(butylamino), octakis(butylsulfanyl) and octakis(butoxy) azaphthalocyanines (AzaPc’s) with central metal Mg, Zn and metal-free. Their photodynamic activity was measured and compared as a dye-sensitized photooxidation of 1,3-diphenylisobenzofuran (DPBF). Compounds with alkylamino substituent are very poor producers of the singlet oxygen and therefore not suitable as sensitizers for photodynamic therapy (PDT). On the other hand, compounds with alkylsulfanyl and alkoxy substituents possess very good photodynamic activity and are suitable for PDT.

After consulting a lot of data, we found that this compound(56413-95-7)Synthetic Route of C6Cl2N4 can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Properties and Exciting Facts About 56413-95-7

After consulting a lot of data, we found that this compound(56413-95-7)Related Products of 56413-95-7 can be used in many types of reactions. And in most cases, this compound has more advantages.

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Synthesis of mono-, di-, tri- and tetracarboxy azaphthalocyanines as potential dark quenchers, published in 2011, which mentions a compound: 56413-95-7, Name is 5,6-Dichloropyrazine-2,3-dicarbonitrile, Molecular C6Cl2N4, Related Products of 56413-95-7.

Mono-, di-, tri- and tetracarboxy-substituted metal-free azaphthalocyanines (AzaPc) were synthesized from 5,6-bis(diethylamino)pyrazine-2,3-dicarbonitrile and 6-(5,6-dicyano-3-(diethylamino)pyrazin-2-ylamino)hexanoic acid using a statistical condensation approach. AzaPc bearing eight diethylamino peripheral substituents was also isolated from the mixture Anal. of the distribution of congeners in the statistical mixture using optimized HPLC method (Phenomenex Synergy RP Fusion column, acetonitrile/tetrahydrofuran/water (pH 5.5) 50:20:30) was performed. The anal. showed optimal ratios of starting materials to be 3:1 for AAAB, 1:3 for ABBB and 1:1 for AABB/ABAB types of the congeners. The distribution of the congeners corresponded well with calculated values indicating similar reactivity of both starting materials and no steric constraint between adjacent isoindole units in the AzaPc ring. All studied AzaPc showed no fluorescence, extremely low singlet oxygen quantum yields (Φ Δ < 0.005) in monomeric form and strong absorption in a wide range from 300 nm to almost 700 nm. Such properties are highly promising for future study of these compounds as dark quenchers of fluorescence in DNA hybridization probes. After consulting a lot of data, we found that this compound(56413-95-7)Related Products of 56413-95-7 can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Research on new synthetic routes about 56413-95-7

After consulting a lot of data, we found that this compound(56413-95-7)Electric Literature of C6Cl2N4 can be used in many types of reactions. And in most cases, this compound has more advantages.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile, is researched, Molecular C6Cl2N4, CAS is 56413-95-7, about Electron-deficient acene-based liquid crystals: dialkoxydicyanopyrazinoquinoxalines.Electric Literature of C6Cl2N4.

Three electron-accepting dialkoxydicyanopyrazinoquinoxaline derivatives showed properties of smectic (Sm) liquid crystals. Temperature-dependent X-ray diffraction studies were consistent with the formation of a bilayer structure through the π-overlap and interdigitation of alkoxy chains in the Sm liquid crystalline state. Intermol. dipole-dipole interactions between the cyano groups played an important role in stabilizing the bilayer structure and liquid crystalline properties. Elongation of the alkoxy chains from C6H13O- and/or C12H25O- to C18H37O- changed the mol. arrangement and the liquid crystal phase from SmA to SmC, suggesting the importance of the van-der-Waals interaction of CnH2n+1O- chains for stabilizing the liquid crystalline phase. A hole-mobility value of 5 × 10-3 cm2 V-1 s-1 was observed for the SmA phase of bis(dodecyloxy)pyrazino[2,3-b]quinoxaline-2,3-dicarbonitrile at 438 K based on transient photocurrent measurements. The synthesis of the target compounds was achieved by a reaction of 5,6-dichloro-2,3-pyrazinedicarbonitrile with 4,5-bis(hexyloxy)-1,2-benzenediamine, 4,5-bis(dodecyloxy)-1,2-benzenediamine, 4,5-bis(octadecyloxy)-1,2-benzenediamine. The title compounds thus formed included bis(alkoxy)pyrazino[2,3-b]quinoxaline-2,3-dicarbonitrile derivatives (electron-deficient acene derivatives, heterocyclic anthracene analogs).

After consulting a lot of data, we found that this compound(56413-95-7)Electric Literature of C6Cl2N4 can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Chemistry Milestones Of 56413-95-7

After consulting a lot of data, we found that this compound(56413-95-7)Recommanded Product: 5,6-Dichloropyrazine-2,3-dicarbonitrile can be used in many types of reactions. And in most cases, this compound has more advantages.

Recommanded Product: 5,6-Dichloropyrazine-2,3-dicarbonitrile. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile, is researched, Molecular C6Cl2N4, CAS is 56413-95-7, about 2-Sulfanylidene-1,3-dithiolo[4,5-b]pyrazine-5,6-dicarbonitrile. Author is Tomura, Masaaki.

In the title compound, C7N4S3, the mol. entity consisting of a 1,3-dithiole-2-thione with a fused pyrazine ring is planar, with an r.m.s. deviation of 0.042 (3) Å from the least-squares plane. In the crystal, mols. are linked via short intermol. S···N contacts [3.251 (4) and 3.308 (3) Å] between the S atom of the thiocarbonyl group and N atoms of the cyano groups.

After consulting a lot of data, we found that this compound(56413-95-7)Recommanded Product: 5,6-Dichloropyrazine-2,3-dicarbonitrile can be used in many types of reactions. And in most cases, this compound has more advantages.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

The important role of 56413-95-7

Although many compounds look similar to this compound(56413-95-7)Recommanded Product: 5,6-Dichloropyrazine-2,3-dicarbonitrile, numerous studies have shown that this compound(SMILES:N#CC1=NC(Cl)=C(Cl)N=C1C#N), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile(SMILESS: N#CC1=NC(Cl)=C(Cl)N=C1C#N,cas:56413-95-7) is researched.Application of 616-43-3. The article 《The synthesis and cyclotetramerisation reactions of aryloxy-, arylalkyloxy-substituted pyrazine-2,3-dicarbonitriles and spectroelectrochemical properties of octakis(hexyloxy)-pyrazinoporphyrazine》 in relation to this compound, is published in Dyes and Pigments. Let’s take a look at the latest research on this compound (cas:56413-95-7).

Novel, aryloxy- and arylalkyloxy-substituted pyrazine dicarbonitriles were synthesized from 5,6-dichloropyrazine-2,3-dicarbonitrile and the corresponding phenol/alc. derivatives Cyclotetramerisation of these pyrazine derivatives to form metal pyrazinoporphyrazines in the presence of appropriate metal salts in different solvents such as DMF, quinoline, 2-dimethylaminoethanol and n-hexanol, resulted in decomposition products with the exception of the latter solvent which lead to mainly octakis(alkyloxy)pyrazinoporphyrazines. Cyclic voltammetry and differential pulsed voltammetry of the complexes indicated that cobalt pyrazinoporphyrazine displayed both ligand and metal-based redox processes while zinc and copper derivatives exhibited only ligand-based redox processes. The redox processes of the pyrazinoporphyrazines shifted significantly towards pos. potentials compared to those of the common phthalocyanines. The novel compounds were characterized using elemental anal. and spectral techniques.

Although many compounds look similar to this compound(56413-95-7)Recommanded Product: 5,6-Dichloropyrazine-2,3-dicarbonitrile, numerous studies have shown that this compound(SMILES:N#CC1=NC(Cl)=C(Cl)N=C1C#N), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Application of 56413-95-7

Although many compounds look similar to this compound(56413-95-7)HPLC of Formula: 56413-95-7, numerous studies have shown that this compound(SMILES:N#CC1=NC(Cl)=C(Cl)N=C1C#N), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

HPLC of Formula: 56413-95-7. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile, is researched, Molecular C6Cl2N4, CAS is 56413-95-7, about Tetra[6,7]quinoxalinoporphyrazines: the effect of an additional benzene ring on photophysical and photochemical properties. Author is Novakova, Veronika; Zimcik, Petr; Miletin, Miroslav; Kopecky, Kamil; Musil, Zbynek.

Tetrapyrazinophthalocyanines (or tetra[6,7]quinoxalinoporphyrazines, 6,7-TQP) and tetrapyrazinoporphyrazines (TPP), bearing carboxy, alkyl, amino, alkylthio and phenolato substituents were prepared as their zinc complexes by macrocyclization of the corresponding 2,3-disubstituted 6,7-quinoxalinodinitriles and 5,6-disubstituted 2,3-pyrazinedinitriles, resp. Synthetic methods for preparation of the precursor dinitriles were developed. Photophys. and photochem. properties of 6,7-TQP were compared with tetrapyrazinoporphyrazines (TPP) bearing the same peripheral substituents to disclose the effect of insertion of a benzene ring between the pyrazine and porphyrazine moieties. The influence of the peripheral heteroatom in the group of 6,7-TQP is also discussed. Prepared 6,7-TQP have their main absorption band (Q-band) strongly batho- and hyperchromically shifted (λmax = 730-770 nm in pyridine, ε up to 500000 dm3 mol-1cm-1) in comparison to TPP. They showed high singlet oxygen quantum yields (ΦΔ = 0.50-0.74) and relatively low fluorescence quantum yields (ΦF < 0.08). Although many compounds look similar to this compound(56413-95-7)HPLC of Formula: 56413-95-7, numerous studies have shown that this compound(SMILES:N#CC1=NC(Cl)=C(Cl)N=C1C#N), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Discovery of 56413-95-7

Although many compounds look similar to this compound(56413-95-7)Recommanded Product: 5,6-Dichloropyrazine-2,3-dicarbonitrile, numerous studies have shown that this compound(SMILES:N#CC1=NC(Cl)=C(Cl)N=C1C#N), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Suzuki, Toshinobu; Nagae, Yasushi; Mitsuhashi, Keiryo published the article 《Synthesis of pyrido[1′,2′:1,2]imidazo[4,5-b]pyrazines from 2,3-dichloro-5,6-dicyanopyrazine with 2-aminopyridines》. Keywords: chlorodicyanopyrazine cyclocondensation aminopyridine; pyridoimidazopyrazine.They researched the compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile( cas:56413-95-7 ).Recommanded Product: 5,6-Dichloropyrazine-2,3-dicarbonitrile. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:56413-95-7) here.

Novel synthesis of the title compounds I (R = H, 6-, 7-, 8-, 9-Me, 8-Cl, 8-Br, 6-PhCH2O) by the facile cyclization between 2,3-dichloro-5,6-dicyanopyrazine and various 2-aminopyridines II under relatively mild conditions is described. The reactivity depended on the basicity of 2-aminopyridines.

Although many compounds look similar to this compound(56413-95-7)Recommanded Product: 5,6-Dichloropyrazine-2,3-dicarbonitrile, numerous studies have shown that this compound(SMILES:N#CC1=NC(Cl)=C(Cl)N=C1C#N), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

You Should Know Something about 56413-95-7

Although many compounds look similar to this compound(56413-95-7)Synthetic Route of C6Cl2N4, numerous studies have shown that this compound(SMILES:N#CC1=NC(Cl)=C(Cl)N=C1C#N), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Nakamura, Akira; Ataka, Toshiei; Segawa, Hirozo; Takeuchi, Yasutomo; Takematsu, Tetsuo researched the compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile( cas:56413-95-7 ).Synthetic Route of C6Cl2N4.They published the article 《Studies on herbicidal 2,3-dicyanopyrazines. Part II. Structure-activity relationships of herbicidal 5-ethylamino- and 5-propylamino-2,3-dicyanopyrazines》 about this compound( cas:56413-95-7 ) in Agricultural and Biological Chemistry. Keywords: herbicide cyanopyrazine structure activity. We’ll tell you more about this compound (cas:56413-95-7).

Sixty-eight 6-substituted 5-ethylamino- and 5-propylamino-2,3-dicyanopyrazines were synthesized and their herbicidal activities against barnyard grass (Echinochloa crus-galii) were measured in pot tests. The most active compound was 2,3-dicyano-5-propylamino-6-(m-chlorophenyl)pyrazine  [72113-45-2]. The activities of the 2 series of compounds were analyzed quant. using the hydrophobic and steric parameters of substituents at the 6-position of the pyrazine ring and an indicator variable.

Although many compounds look similar to this compound(56413-95-7)Synthetic Route of C6Cl2N4, numerous studies have shown that this compound(SMILES:N#CC1=NC(Cl)=C(Cl)N=C1C#N), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Final Thoughts on Chemistry for 56413-95-7

Although many compounds look similar to this compound(56413-95-7)Recommanded Product: 5,6-Dichloropyrazine-2,3-dicarbonitrile, numerous studies have shown that this compound(SMILES:N#CC1=NC(Cl)=C(Cl)N=C1C#N), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 56413-95-7, is researched, Molecular C6Cl2N4, about Synthesis, spectral and electrochemical study of perchlorinated tetrapyrazinoporphyrazine and its AlIII, GaIII and InIII complexes, the main research direction is preparation aluminum gallium indium perchlorinated tetrapyrazinoporphyrazine complex; cyclic voltammetry aluminum gallium indium perchlorinated tetrapyrazinoporphyrazine complex.Recommanded Product: 5,6-Dichloropyrazine-2,3-dicarbonitrile.

Complexes of octachloro substituted tetrapyrazinoporphyrazine with AlIII, GaIII and InIII (2a-c, (I: 2, 4, and 5)) were synthesized by direct melting of 5,6-dichloro-2,3-dicarbonitrile (1) with corresponding metal salt (AlIII chloride, GaIII and InIII hydroxydiacetates). Metal free macrocycle (II: 3) was prepared by catalytic demetalation of the InIII complex 2c (5) in the presence of chloride ions. Introduction of eight chlorine atoms to the peripheral positions of the TPyzPA macrocycle leads to a bathochromic shift of the Q band by 10-15 nm indicating narrowing of the HOMO-LUMO gap by 210-260 cm-1. The presence of eight electroneg. chlorine atoms facilitates the reduction of the TPyzPA macrocycle leading to the considerable pos. shift of the 1st reduction potentials for the metal complexes 2a-c (2, 4, and 5)(E1/2 approx. -0.16 V vs. Ag/AgCl in DMSO) and for the metal free macrocycle 3 (E1/2 = -0.04 V vs. Ag/AgCl in DMSO).

Although many compounds look similar to this compound(56413-95-7)Recommanded Product: 5,6-Dichloropyrazine-2,3-dicarbonitrile, numerous studies have shown that this compound(SMILES:N#CC1=NC(Cl)=C(Cl)N=C1C#N), has unique advantages. If you want to know more about similar compounds, you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate