Simple exploration of 56413-95-7

There is still a lot of research devoted to this compound(SMILES:N#CC1=NC(Cl)=C(Cl)N=C1C#N)Safety of 5,6-Dichloropyrazine-2,3-dicarbonitrile, and with the development of science, more effects of this compound(56413-95-7) can be discovered.

Most of the natural products isolated at present are heterocyclic compounds, so heterocyclic compounds occupy an important position in the research of organic chemistry. A compound: 56413-95-7, is researched, SMILESS is N#CC1=NC(Cl)=C(Cl)N=C1C#N, Molecular C6Cl2N4Journal, Article, Chemistry – A European Journal called Stable and Easily Accessible Functional Dyes: Dihydrotetraazaanthracenes as Versatile Precursors for Higher Acenes, Author is Gampe, Dominique Mario; Kaufmann, Martin; Jakobi, Doerthe; Sachse, Torsten; Presselt, Martin; Beckert, Rainer; Goerls, Helmar, the main research direction is dihydrotetraazaanthracene dye; chromophores; cyclization; density functional calculations; nitrogen heterocycles; sensitizers.Safety of 5,6-Dichloropyrazine-2,3-dicarbonitrile.

A series of new dihydrotetraazaanthracenes and one new dihydrotetraazatetracene as substances for applications in organoelectronic devices and as suitable building blocks for higher azaacenes was synthesized. The condensation of aromatic diamines with dichlorodicyanopyrazine led to these tricyclic/tetracyclic compounds Syntheses of N-substituted phenylenediamines were developed to enable the introduction of multiple functional groups such as ester, amino, or nitro groups on the chromophoric system. Relationships between the structure and the spectroscopic properties could be derived from UV/Vis absorption and fluorescence spectroscopy, and by DFT and TD-DFT calculations of mol. and aggregate structures. The absorption spectra are dominated by π-π* transitions of the single mols., whereas aggregation needs to be taken into account to obtain reasonable agreement between theory and experiment in certain cases. Single-crystal x-ray analyses were carried out to examine the morphol. and solid packing effects. Finally, a dihydrotetraazaanthracene was used as a building-block to create a mesoionic octaazapentacene.

There is still a lot of research devoted to this compound(SMILES:N#CC1=NC(Cl)=C(Cl)N=C1C#N)Safety of 5,6-Dichloropyrazine-2,3-dicarbonitrile, and with the development of science, more effects of this compound(56413-95-7) can be discovered.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

The important role of 56413-95-7

If you want to learn more about this compound(5,6-Dichloropyrazine-2,3-dicarbonitrile)Category: chiral-oxygen-ligands, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(56413-95-7).

Category: chiral-oxygen-ligands. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile, is researched, Molecular C6Cl2N4, CAS is 56413-95-7, about Systematic investigation of phthalocyanines, naphthalocyanines, and their aza-analogues. Effect of the isosteric aza-replacement in the core. Author is Novakova, Veronika; Reimerova, Petra; Svec, Jan; Suchan, Daniel; Miletin, Miroslav; Rhoda, Hannah M.; Nemykin, Victor N.; Zimcik, Petr.

Zinc complexes of phthalocyanine, naphthalocyanine and their aza-analogs with alkylsulfanyl substituents were synthesized and characterized by UV-visible and MCD spectroscopy, and their redox properties were investigated using CV, DPV, and SWV approaches as well as spectroelectrochem. methods. Aggregation, photostability, singlet oxygen production, and fluorescence quantum yields of the target complexes were studied as a function of the stepwise substitution of the aromatic C-H fragments by nitrogen atoms. The electronic structure and vertical excitation energies of the target compounds were probed by DFT-PCM and TDDFT-PCM approaches. Introduction of addnl. nitrogens into the structure leads to a hypsochromic shift of the Q-band and makes the macrocycle strongly electron deficient and more photostable. The impact on the photophysics is limited. The relations between the type of macrocycle and the studied properties were defined.

If you want to learn more about this compound(5,6-Dichloropyrazine-2,3-dicarbonitrile)Category: chiral-oxygen-ligands, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(56413-95-7).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

A new application about 56413-95-7

If you want to learn more about this compound(5,6-Dichloropyrazine-2,3-dicarbonitrile)COA of Formula: C6Cl2N4, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(56413-95-7).

COA of Formula: C6Cl2N4. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile, is researched, Molecular C6Cl2N4, CAS is 56413-95-7, about Multivalent Allyl-Substituted Macrocycles as Nonaggregating Building Blocks. Author is Husain, Ali; Ganesan, Asaithampi; Ghazal, Basma; Makhseed, Saad.

Based on the concept of dual-directionality, the synthesis of two novel zinc(II)-containing phthalocyanine (Pc-ene1) and azaphthalocyanine (AzaPc-ene1) macrocycles bearing dual directional (up/down) allyl moieties on their rims is reported. Their structural identification, i.e., NMR, FT-IR, UV-vis, MALDI-TOF spectral data, single crystal x-ray diffraction, and CHN elemental analyses, along with their nonaggregating behaviors in solvated media and crystalline forms has been confirmed.

If you want to learn more about this compound(5,6-Dichloropyrazine-2,3-dicarbonitrile)COA of Formula: C6Cl2N4, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(56413-95-7).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Discovery of 56413-95-7

There is still a lot of research devoted to this compound(SMILES:N#CC1=NC(Cl)=C(Cl)N=C1C#N)SDS of cas: 56413-95-7, and with the development of science, more effects of this compound(56413-95-7) can be discovered.

SDS of cas: 56413-95-7. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile, is researched, Molecular C6Cl2N4, CAS is 56413-95-7, about The synthesis of metal-free octaazaphthalocyanine derivatives containing bulky phenoxy substituents to prevent self-association. Author is Makhseed, Saad; Ibrahim, Fadi; Bezzu, C. Grazia; McKeown, Neil B..

Octaazaphthalocyanines with eight phenoxy groups in the peripheral sites are prepared for the first time using the simple synthetic procedure of heating their pyrazine-2,3-dicarbonitrile precursor in quinoline. This process avoids transetherification, which has hindered previous attempts at preparing metal-free octaazaphthalocyanines. Metal-containing derivatives were also prepared by adding the appropriate metal salt to the reaction mixture Bulky iso-Pr or Ph groups at the 2,6-positions of the phenoxy substituents prevent self-association of the octaazaphthalocyanine cores even in the solid state.

There is still a lot of research devoted to this compound(SMILES:N#CC1=NC(Cl)=C(Cl)N=C1C#N)SDS of cas: 56413-95-7, and with the development of science, more effects of this compound(56413-95-7) can be discovered.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Now Is The Time For You To Know The Truth About 56413-95-7

There is still a lot of research devoted to this compound(SMILES:N#CC1=NC(Cl)=C(Cl)N=C1C#N)HPLC of Formula: 56413-95-7, and with the development of science, more effects of this compound(56413-95-7) can be discovered.

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Tetrahedron Letters called Highly efficient synthesis of 5,6-disubstituted-5H-pyrrolo[2,3-b]pyrazine-2,3-dicarbonitriles through a one-pot palladium-catalyzed coupling reaction/cyclization in water, Author is Keivanloo, Ali; Bakherad, Mohammad; Nasr-Isfahani, Hossein; Esmaily, Somayeh, which mentions a compound: 56413-95-7, SMILESS is N#CC1=NC(Cl)=C(Cl)N=C1C#N, Molecular C6Cl2N4, HPLC of Formula: 56413-95-7.

A highly efficient one-pot synthesis of 5,6-disubstituted-5H-pyrrolo[2,3-b]pyrazine-2,3-dicarbonitriles is presented. The reaction of 5-(alkyl/arylamino)-6-chloropyrazine-2,3-dicarbonitriles with phenylacetylene, catalyzed by Pd-Cu, in the presence of SDS as the surfactant in water, leads to the desired products in good-to-high yields.

There is still a lot of research devoted to this compound(SMILES:N#CC1=NC(Cl)=C(Cl)N=C1C#N)HPLC of Formula: 56413-95-7, and with the development of science, more effects of this compound(56413-95-7) can be discovered.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

New downstream synthetic route of 56413-95-7

There is still a lot of research devoted to this compound(SMILES:N#CC1=NC(Cl)=C(Cl)N=C1C#N)COA of Formula: C6Cl2N4, and with the development of science, more effects of this compound(56413-95-7) can be discovered.

Lochman, Lukas; Svec, Jan; Roh, Jaroslav; Novakova, Veronika published the article 《The role of the size of aza-crown recognition moiety in azaphthalocyanine fluorescence sensors for alkali and alkaline earth metal cations》. Keywords: fluorescence indicator alkali alk earth metal cation.They researched the compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile( cas:56413-95-7 ).COA of Formula: C6Cl2N4. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:56413-95-7) here.

A series of fluorescence sensors bearing one 1-aza-12-crown-4, 1-aza-15-crown-5, 1-aza-18-crown-6 or 1-aza-21-crown-7 as a recognition moiety and an aza-analog of phthalocyanine as a fluorophore was prepared All compounds absorbed and emitted light in the red region. Sensing properties based on intramol. charge transfer were studied via absorption and fluorescence titration experiments with alkali metal cations and alk. earth metal cations. Important relationships between aza-crown size and binding affinity were observed in the group of alkali metal cations. Affinity for lithium decreased in series from the smallest crown to the largest, 1-aza-15-crown-5 bound sodium and potassium similarly, and 1-aza-18-crown-6 had the highest affinity to potassium. Alk. earth metal cations were bound more tightly, which was obvious from more pronounced changes in the absorption spectra, and from the higher increase of fluorescence upon cation addition A limited size preference was observed in the group of alk. earth metal cations.

There is still a lot of research devoted to this compound(SMILES:N#CC1=NC(Cl)=C(Cl)N=C1C#N)COA of Formula: C6Cl2N4, and with the development of science, more effects of this compound(56413-95-7) can be discovered.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

New learning discoveries about 56413-95-7

Here is a brief introduction to this compound(56413-95-7)Computed Properties of C6Cl2N4, if you want to know about other compounds related to this compound(56413-95-7), you can read my other articles.

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile(SMILESS: N#CC1=NC(Cl)=C(Cl)N=C1C#N,cas:56413-95-7) is researched.Recommanded Product: cis-4-Aminocyclohexane carboxylic acid. The article 《Preparation of magnesium azaphthalocyanines by cyclotetramerization of S-substituted 4,5-disulfanylpyrazine-2,3-dicarbonitriles》 in relation to this compound, is published in Acta Chemica Scandinavica. Let’s take a look at the latest research on this compound (cas:56413-95-7).

Four novel S-substituted 4,5-disulfanylpyrazine-2,3-dicarbonitriles were obtained in a multistep synthesis from diaminomaleonitrile. Two of these dicarbonitriles, with Et or benzyl S-substituents, give pure Mg azaphthalocyanines in good yields when reacted with Mg propoxide in PrOH and dioxane. Aromatic S-substituents are less stable during the reaction conditions used for cyclizations, and product mixtures were obtained.

Here is a brief introduction to this compound(56413-95-7)Computed Properties of C6Cl2N4, if you want to know about other compounds related to this compound(56413-95-7), you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Brief introduction of 56413-95-7

Here is a brief introduction to this compound(56413-95-7)Category: chiral-oxygen-ligands, if you want to know about other compounds related to this compound(56413-95-7), you can read my other articles.

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called One-dimensional single-helix coordination polymer self-assembled by a crown-ether appended-N-heteroacene radical anion, published in 2019, which mentions a compound: 56413-95-7, mainly applied to heteroacene crown ether radical anion preparation crystal mol structure; dicyanopentaoxacyclopentadecinopyrazinoquinoxaline preparation crystal mol structure reaction alkali tetraphenylborate, Category: chiral-oxygen-ligands.

A crown-ether appended N-heteroacene 1 was reduced in the presence of NaBPh4 to the radical anion 2 by accepting one electron transferred from both the cathode and BPh4- as a reductant. The obtained radical anion 2 can function as a radical anion ligand to bridge two sodium ions to self-assemble into one-dimensional helical coordination polymers.

Here is a brief introduction to this compound(56413-95-7)Category: chiral-oxygen-ligands, if you want to know about other compounds related to this compound(56413-95-7), you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Properties and Exciting Facts About 56413-95-7

Here is a brief introduction to this compound(56413-95-7)Recommanded Product: 5,6-Dichloropyrazine-2,3-dicarbonitrile, if you want to know about other compounds related to this compound(56413-95-7), you can read my other articles.

Recommanded Product: 5,6-Dichloropyrazine-2,3-dicarbonitrile. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile, is researched, Molecular C6Cl2N4, CAS is 56413-95-7, about Metal-Cation Recognition in Water by a Tetrapyrazinoporphyrazine-Based Tweezer Receptor. Author is Lochman, Lukas; Svec, Jan; Roh, Jaroslav; Kirakci, Kaplan; Lang, Kamil; Zimcik, Petr; Novakova, Veronika.

A series of zinc azaphthalocyanines with two azacrowns in a rigid tweezer arrangement were prepared and the fluorescence sensing properties were studied. The size-driven recognition of alkali and alk. earth metal cations was significantly enhanced by the close cooperation of the two azacrown units, in which both donor nitrogen atoms need to be involved in analyte binding to switch the sensor on. The mono- or biphasic character of the binding isotherms, together with the binding stoichiometry and magnitude of association constants (KA), indicated specific complexation of particular analytes. Water solvation was shown to play an important role and resulted in a strong quenching of sensor fluorescence in the ON state. The lead compound was embedded into silica nanoparticles and advantageous sensing properties towards K+ were demonstrated in water (λF = 671 nm, apparent KA = 82 M-1, increase of 17×), even in the presence of (supra)physiol. concentrations of Na+ and Ca2+.

Here is a brief introduction to this compound(56413-95-7)Recommanded Product: 5,6-Dichloropyrazine-2,3-dicarbonitrile, if you want to know about other compounds related to this compound(56413-95-7), you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Awesome and Easy Science Experiments about 56413-95-7

Here is a brief introduction to this compound(56413-95-7)Formula: C6Cl2N4, if you want to know about other compounds related to this compound(56413-95-7), you can read my other articles.

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Solid-Phase Synthesis of Aza-phthalocyanine-Oligonucleotide Conjugates and Their Evaluation As New Dark Quenchers of Fluorescence, published in 2010-10-31, which mentions a compound: 56413-95-7, mainly applied to DNA fluorescence hybridization fluorescence quenching solid phase, Formula: C6Cl2N4.

Hydrophobic non-aggregating metal-free azaphthalocyanines (AzaPc) of the tetrapyrazinoporphyrazine type were synthesized, characterized, and used for oligonucleotide labeling. Both 3′-end and 5′-end labeling methods using solid phase synthesis suitable for automatic processes in the DNA/RNA synthesizer were developed. The hydrophobic character of AzaPc enabled the anchoring of the conjugates on reverse phase of the oligonucleotide purification cartridge, thus enabling their simple purification AzaPc did not show any fluorescence and extremely low singlet oxygen quantum yields (ΦΔ = 0.015-0.018 in DMF) in a monomeric state due to ultrafast intramol. charge transfer. That is why they were investigated as a new dark quencher structural type. They profit particularly from absorption in a wide range of wavelengths (300-740 nm) that covers all fluorophores used in hybridization assays nowadays. As an example, quenching efficiency was evaluated in a simple hybridization assay using monolabeled probes. AzaPc-based probes efficiently quenched both fluorescein and Cy5 fluorescence by both resonance energy transfer and contact quenching. The results were compared with three established dark quenchers, and the AzaPc exerted better (BHQ-1 and BHQ-2) or comparable (BBQ-650) quenching efficiencies for both fluorophores.

Here is a brief introduction to this compound(56413-95-7)Formula: C6Cl2N4, if you want to know about other compounds related to this compound(56413-95-7), you can read my other articles.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate