The effect of the change of (2S,3S)-Butane-2,3-diol synthetic route on the product

Thank you very much for taking the time to read this article. If you are also interested in other aspects of (2S,3S)-Butane-2,3-diol, CAS: 19132-06-0, you can also browse my other articles.

19132-06-0, An elementary termolecular reaction involves the simultaneous collision of three atoms, molecules, or ions.4254-15-3, name is (S)-Propane-1,2-diol. Here is a downstream synthesis route of the compound 4254-15-3

To a 500-mL, 3-necked-RBF (equipped with a H20-cooled reflux condenser and an HCl trap) was added (2s,3s)-(+)-2,3-butanediol (Aldrich; 15.00 mL, 166 mmol) and CC14 (120 mL). SOCl2, reagentplus (14.57 mL, 200 mmol) was then added drop wise via a syringe over a period of 20 min and the resulting mixture was heated to 98C for 45 min, then allowed to cool to rt. The reaction mixture was then cooled in an ice/H20 bath, MeCN (120 mL) and H20 (150 mL) were added followed by ruthenium(III) chloride (0.035 g, 0.166 mmol). Sodium periodate (53.4 g, 250 mmol) was then added slowly portion wise over 30 min. The resulting biphasic brown mixture was stirred vigorously while allowed to reach rt for a period of 1.5 h (internal temperature never increased above rt). TLC (50% EtOAc in heptanes) showed complete conversion. The crude mixture was then poured into ice H20 and extracted twice with 300 mL of Et20. The combined organic layers were washed once with 200 mL of sat. sodium bicarbonate, washed once with 200 mL of brine, dried over Na2S04; and concentrated by rotary evaporation to give (4S,5S)-4,5-dimethyl-l,3,2- dioxathiolane 2,2-dioxide (21.2 g, 139 mmol) as a red oil.

Thank you very much for taking the time to read this article. If you are also interested in other aspects of (2S,3S)-Butane-2,3-diol, CAS: 19132-06-0, you can also browse my other articles.

Reference£º
Patent; AMGEN INC.; BROWN, Sean P.; LI, Yunxiao; LIZARZABURU, Mike Elias; LUCAS, Brian S.; PARAS, Nick A.; TAYGERLY, Joshua; VIMOLRATANA, Marc; WANG, Xianghong; YU, Ming; ZANCANELLA, Manuel; ZHU, Liusheng; GONZALEZ BUENROSTRO, Ana; LI, Zhihong; (279 pag.)WO2016/33486; (2016); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Derivation of elementary reaction about (2S,3S)-Butane-2,3-diol

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of 19132-06-0, We look forward to the emergence of more reaction modes in the future.

One of the major reasons is to use measurements of the macroscopic properties of a system, such as the rate of change in the concentration of reactants or products with time, to discover the sequence of events that occur at the molecular level.19132-06-0, (2S,3S)-Butane-2,3-diol, introduce a new downstream synthesis route. 19132-06-0

To a 500-mL, 3-necked-RBF (equipped with a H20-cooled refluxcondenser and an HC1 trap) was added (2s,3s)-(+)-2,3-butanediol (Aldrich; 15.00mL, 166 mmol) and CC14 (120 mL). SOC12, reagentplus (14.57 mL, 200 mmol)was then added drop wise via a syringe over a period of 20 mm and the resultingmixture was heated to 98C for 45 mm, then allowed to cool to rt. The reactionmixture was then cooled in an ice/H20 bath, MeCN (120 mL) and H20 (150 mL) were added followed by ruthenium(III) chloride (0.035 g, 0.166 mmol). Sodium periodate (53.4 g, 250 mmol) was then added slowly portion wise over 30 mm. The resulting biphasic brown mixture was stirred vigorously while allowed toreach rt for a period of 1.5 h (internal temperature never increased above rt). TLC (50% EtOAc in heptanes) showed complete conversion. The cmde mixture was then poured into ice H20 and extracted twice with 300 mL of Et20. The combined organic layers were washed once with 200 mL of sat. sodium bicarbonate, washed once with 200 mL of brine, dried over Na2504, andconcentrated by rotary evaporation to give (45,55)-4,5-dimethyl-1,3,2- dioxathiolane 2,2-dioxide (21.2 g, 139 mmol) as a red oil.

This molecular description is the mechanism of the reaction; it describes how individual atoms, ions, or molecules interact to form particular products.If you are interested, you can also browse other articles of 19132-06-0, We look forward to the emergence of more reaction modes in the future.

Reference£º
Patent; AMGEN INC.; HARRINGTON, Paul E.; ASHTON, Kate; BROWN, Sean P.; KALLER, Matthew R.; KOHN, Todd J.; LANMAN, Brian Alan; LI, Kexue; LI, Yunxiao; LOW, Jonathan D.; MINATTI, Ana Elena; PICKRELL, Alexander J.; STEC, Markian M.; TAYGERLY, Joshua; (991 pag.)WO2018/183418; (2018); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Flexible application of (2S,3S)-Butane-2,3-diol in synthetic route

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of (2S,3S)-Butane-2,3-diol, CAS: 19132-06-0, you can also browse my other articles.

The molecularity of an elementary reaction is the number of molecules that collide during that step in the mechanism. If there is only a single reactant molecule in an elementary reaction, that step is designated as unimolecular.19132-06-0, name is (2S,3S)-Butane-2,3-diol. A new synthetic method of this compound is introduced below. , 19132-06-0

To a 500-mL, 3-necked-RBF (equipped with a H20-cooled refluxcondenser and an HC1 trap) was added (2s,3s)-(+)-2,3-butanediol (Aldrich; 15.00mL, 166 mmol) and CC14 (120 mL). SOC12, reagentplus (14.57 mL, 200 mmol)was then added drop wise via a syringe over a period of 20 mm and the resultingmixture was heated to 98C for 45 mm, then allowed to cool to rt. The reactionmixture was then cooled in an ice/H20 bath, MeCN (120 mL) and H20 (150 mL) were added followed by ruthenium(III) chloride (0.035 g, 0.166 mmol). Sodium periodate (53.4 g, 250 mmol) was then added slowly portion wise over 30 mm. The resulting biphasic brown mixture was stirred vigorously while allowed toreach rt for a period of 1.5 h (internal temperature never increased above rt). TLC (50% EtOAc in heptanes) showed complete conversion. The cmde mixture was then poured into ice H20 and extracted twice with 300 mL of Et20. The combined organic layers were washed once with 200 mL of sat. sodium bicarbonate, washed once with 200 mL of brine, dried over Na2504, andconcentrated by rotary evaporation to give (45,55)-4,5-dimethyl-1,3,2- dioxathiolane 2,2-dioxide (21.2 g, 139 mmol) as a red oil.

A chemical reaction often occurs in steps, although it may not always be obvious to an observer. Thank you very much for taking the time to read this article. If you are also interested in other aspects of (2S,3S)-Butane-2,3-diol, CAS: 19132-06-0, you can also browse my other articles.

Reference£º
Patent; AMGEN INC.; HARRINGTON, Paul E.; ASHTON, Kate; BROWN, Sean P.; KALLER, Matthew R.; KOHN, Todd J.; LANMAN, Brian Alan; LI, Kexue; LI, Yunxiao; LOW, Jonathan D.; MINATTI, Ana Elena; PICKRELL, Alexander J.; STEC, Markian M.; TAYGERLY, Joshua; (991 pag.)WO2018/183418; (2018); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Discovery of (2S,3S)-Butane-2,3-diol

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (2S,3S)-Butane-2,3-diol.

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 19132-06-0,(2S,3S)-Butane-2,3-diol, This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.19132-06-0

To a 500-mL, 3-necked-RBF (equipped with a H20-cooled reflux condenser and an HCl trap) was added (2s,3s)-(+)-2,3-butanediol (Aldrich; 15.00 mL, 166 mmol) and CC14 (120 mL). SOCl2, reagentplus (14.57 mL, 200 mmol) was then added drop wise via a syringe over a period of 20 min and the resulting mixture was heated to 98C for 45 min, then allowed to cool to rt. The reaction mixture was then cooled in an ice/H20 bath, MeCN (120 mL) and H20 (150 mL) were added followed by ruthenium(III) chloride (0.035 g, 0.166 mmol). Sodium periodate (53.4 g, 250 mmol) was then added slowly portion wise over 30 min. The resulting biphasic brown mixture was stirred vigorously while allowed to reach rt for a period of 1.5 h (internal temperature never increased above rt). TLC (50% EtOAc in heptanes) showed complete conversion. The crude mixture was then poured into ice H20 and extracted twice with 300 mL of Et20. The combined organic layers were washed once with 200 mL of sat. sodium bicarbonate, washed once with 200 mL of brine, dried over Na2S04; and concentrated by rotary evaporation to give (4S,5S)-4,5-dimethyl-l,3,2- dioxathiolane 2,2-dioxide (21.2 g, 139 mmol) as a red oil.

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (2S,3S)-Butane-2,3-diol.

Reference£º
Patent; AMGEN INC.; BROWN, Sean P.; LI, Yunxiao; LIZARZABURU, Mike Elias; LUCAS, Brian S.; PARAS, Nick A.; TAYGERLY, Joshua; VIMOLRATANA, Marc; WANG, Xianghong; YU, Ming; ZANCANELLA, Manuel; ZHU, Liusheng; GONZALEZ BUENROSTRO, Ana; LI, Zhihong; (279 pag.)WO2016/33486; (2016); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

A new synthetic route of (2S,3S)-Butane-2,3-diol

The chemical industry reduces the impact on the environment during synthesis, 19132-06-0,(2S,3S)-Butane-2,3-diol,I believe this compound will play a more active role in future production and life.

19132-06-0,A common heterocyclic compound, 19132-06-0,(2S,3S)-Butane-2,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

To a 500-mL, 3-necked-RBF (equipped with a H20-cooled refluxcondenser and an HC1 trap) was added (2s,3s)-(+)-2,3-butanediol (Aldrich; 15.00mL, 166 mmol) and CC14 (120 mL). SOC12, reagentplus (14.57 mL, 200 mmol)was then added drop wise via a syringe over a period of 20 mm and the resultingmixture was heated to 98C for 45 mm, then allowed to cool to rt. The reactionmixture was then cooled in an ice/H20 bath, MeCN (120 mL) and H20 (150 mL) were added followed by ruthenium(III) chloride (0.035 g, 0.166 mmol). Sodium periodate (53.4 g, 250 mmol) was then added slowly portion wise over 30 mm. The resulting biphasic brown mixture was stirred vigorously while allowed toreach rt for a period of 1.5 h (internal temperature never increased above rt). TLC (50% EtOAc in heptanes) showed complete conversion. The cmde mixture was then poured into ice H20 and extracted twice with 300 mL of Et20. The combined organic layers were washed once with 200 mL of sat. sodium bicarbonate, washed once with 200 mL of brine, dried over Na2504, andconcentrated by rotary evaporation to give (45,55)-4,5-dimethyl-1,3,2- dioxathiolane 2,2-dioxide (21.2 g, 139 mmol) as a red oil.

The chemical industry reduces the impact on the environment during synthesis, 19132-06-0,(2S,3S)-Butane-2,3-diol,I believe this compound will play a more active role in future production and life.

Reference£º
Patent; AMGEN INC.; HARRINGTON, Paul E.; ASHTON, Kate; BROWN, Sean P.; KALLER, Matthew R.; KOHN, Todd J.; LANMAN, Brian Alan; LI, Kexue; LI, Yunxiao; LOW, Jonathan D.; MINATTI, Ana Elena; PICKRELL, Alexander J.; STEC, Markian M.; TAYGERLY, Joshua; (991 pag.)WO2018/183418; (2018); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Extended knowledge of (2S,3S)-Butane-2,3-diol

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (2S,3S)-Butane-2,3-diol.

19132-06-0,Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials.19132-06-0,A new synthetic method of this compound is introduced below.

To a 500-mL, 3-necked-RBF (equipped with a H20-cooled refluxcondenser and an HC1 trap) was added (2s,3s)-(+)-2,3-butanediol (Aldrich; 15.00mL, 166 mmol) and CC14 (120 mL). SOC12, reagentplus (14.57 mL, 200 mmol)was then added drop wise via a syringe over a period of 20 mm and the resultingmixture was heated to 98C for 45 mm, then allowed to cool to rt. The reactionmixture was then cooled in an ice/H20 bath, MeCN (120 mL) and H20 (150 mL) were added followed by ruthenium(III) chloride (0.035 g, 0.166 mmol). Sodium periodate (53.4 g, 250 mmol) was then added slowly portion wise over 30 mm. The resulting biphasic brown mixture was stirred vigorously while allowed toreach rt for a period of 1.5 h (internal temperature never increased above rt). TLC (50% EtOAc in heptanes) showed complete conversion. The cmde mixture was then poured into ice H20 and extracted twice with 300 mL of Et20. The combined organic layers were washed once with 200 mL of sat. sodium bicarbonate, washed once with 200 mL of brine, dried over Na2504, andconcentrated by rotary evaporation to give (45,55)-4,5-dimethyl-1,3,2- dioxathiolane 2,2-dioxide (21.2 g, 139 mmol) as a red oil.

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (2S,3S)-Butane-2,3-diol.

Reference£º
Patent; AMGEN INC.; HARRINGTON, Paul E.; ASHTON, Kate; BROWN, Sean P.; KALLER, Matthew R.; KOHN, Todd J.; LANMAN, Brian Alan; LI, Kexue; LI, Yunxiao; LOW, Jonathan D.; MINATTI, Ana Elena; PICKRELL, Alexander J.; STEC, Markian M.; TAYGERLY, Joshua; (991 pag.)WO2018/183418; (2018); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Continuously updated synthesis method about 19132-06-0

At the same time, in my other blogs, there are other synthetic methods of this type of compound, (2S,3S)-Butane-2,3-diol, and friends who are interested can also refer to it.

In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 19132-06-0,(2S,3S)-Butane-2,3-diol, as follows.19132-06-0

To a 500-mL, 3-necked round-bottomed flask (equipped with a water- cooled reflux condenser and an HCI trap) was added (2s,3s)-(-f-)-2.3-butanediol (Aldrich, Milwaukee Wisconsin)(1500 nil, 166 mniol) and CCI4 (120 ml). Thionyl chloride. reagentplus (14.57 ml, 200 mmoi) was then added drop wise viaa syringe over a period of 20 minutes and the resulting mixture was heated to98 C for 45 minutes, then it was allowed to cool to room temperature. Rf ofintermediate == 0.42 eluting with 50% EtOAc in heptanes; use KMNO4 to visualizecompound, The reaction mixture was then cooled in an ice-water bath. MeCN(120 mL) and water (150 rnL) were added followed by ruthenium(111) chloride(0.035g. 0.166 nunol). Sodium periodate (53.4 g, 250 rnmol) was then addedslowly portion wise over 30 minutes. The resulting biphasic brown mixture was stirred vigorously whie allowed to reach room temperature for a period of 1.5 hour (internal temperature never increased above room temperature). TLC (50% EtOAc in heptanes) showed complete conversion. The crude mixture was thenpoured into ice water and extracted twice with 300 ml of diethyl ether. The combined organic layers were washed once with 200 ml of saturated sodium bicarbonate, washed once with 200 nil of brine, dried over sodium sulfate and concentrated by rotary evaporation to give (4S.5 S)-4,5-dimethyi- 1,3,2- dioxathiolane 2,2-dioxide (21.2 g, 139 mmoi) as a red oil.

At the same time, in my other blogs, there are other synthetic methods of this type of compound, (2S,3S)-Butane-2,3-diol, and friends who are interested can also refer to it.

Reference£º
Patent; AMGEN INC.; BROWN, Sean P.; BEDKE, David Karl; DEGRAFFENREID, Michael R.; FU, Jiasheng; LI, Zhihong; GONZALEZ LOPEZ DE TURISO, Felix; GONZALEZ BUENROSTRO, Ana; GRIBBLE, Jr., Michael W.; JOHNSON, Michael G.; KOHN, Todd J.; LI, Kexue; LI, Yunxiao; LIZARZABURU, Mike Elias; REW, Yosup; TAYGERLY, Joshua; WANG, Yingcai; YAN, Xuelei; YU, Ming; ZHU, Jiang; ZANCANELLA, Manuel; JIAO, Xian Yun; ZHU, Liusheng; WANG, Xianghong; MEDINA, Julio C.; DUQUETTE, Jason A.; HOUZE, Jonathan B.; VIMOLRATANA, Marc; CARDOZO, Mario G.; CHENG, Alan C.; (2426 pag.)WO2017/147410; (2017); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Discovery of 19132-06-0

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (2S,3S)-Butane-2,3-diol.

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 19132-06-0,(2S,3S)-Butane-2,3-diol, This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.19132-06-0

To a 500-mL, 3-necked round-bottomed flask (equipped with a water- cooled reflux condenser and an HCI trap) was added (2s,3s)-(-f-)-2.3-butanediol (Aldrich, Milwaukee Wisconsin)(1500 nil, 166 mniol) and CCI4 (120 ml). Thionyl chloride. reagentplus (14.57 ml, 200 mmoi) was then added drop wise viaa syringe over a period of 20 minutes and the resulting mixture was heated to98 C for 45 minutes, then it was allowed to cool to room temperature. Rf ofintermediate == 0.42 eluting with 50% EtOAc in heptanes; use KMNO4 to visualizecompound, The reaction mixture was then cooled in an ice-water bath. MeCN(120 mL) and water (150 rnL) were added followed by ruthenium(111) chloride(0.035g. 0.166 nunol). Sodium periodate (53.4 g, 250 rnmol) was then addedslowly portion wise over 30 minutes. The resulting biphasic brown mixture was stirred vigorously whie allowed to reach room temperature for a period of 1.5 hour (internal temperature never increased above room temperature). TLC (50% EtOAc in heptanes) showed complete conversion. The crude mixture was thenpoured into ice water and extracted twice with 300 ml of diethyl ether. The combined organic layers were washed once with 200 ml of saturated sodium bicarbonate, washed once with 200 nil of brine, dried over sodium sulfate and concentrated by rotary evaporation to give (4S.5 S)-4,5-dimethyi- 1,3,2- dioxathiolane 2,2-dioxide (21.2 g, 139 mmoi) as a red oil.

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (2S,3S)-Butane-2,3-diol.

Reference£º
Patent; AMGEN INC.; BROWN, Sean P.; BEDKE, David Karl; DEGRAFFENREID, Michael R.; FU, Jiasheng; LI, Zhihong; GONZALEZ LOPEZ DE TURISO, Felix; GONZALEZ BUENROSTRO, Ana; GRIBBLE, Jr., Michael W.; JOHNSON, Michael G.; KOHN, Todd J.; LI, Kexue; LI, Yunxiao; LIZARZABURU, Mike Elias; REW, Yosup; TAYGERLY, Joshua; WANG, Yingcai; YAN, Xuelei; YU, Ming; ZHU, Jiang; ZANCANELLA, Manuel; JIAO, Xian Yun; ZHU, Liusheng; WANG, Xianghong; MEDINA, Julio C.; DUQUETTE, Jason A.; HOUZE, Jonathan B.; VIMOLRATANA, Marc; CARDOZO, Mario G.; CHENG, Alan C.; (2426 pag.)WO2017/147410; (2017); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Discovery of 19132-06-0

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (2S,3S)-Butane-2,3-diol.

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 19132-06-0,(2S,3S)-Butane-2,3-diol, This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.19132-06-0

To a 500-mL, 3-necked-RBF (equipped with a H20-cooled reflux condenser and an HCl trap) was added (2s,3s)-(+)-2,3-butanediol (Aldrich; 15.00 mL, 166 mmol) and CC14 (120 mL). SOCl2, reagentplus (14.57 mL, 200 mmol) was then added drop wise via a syringe over a period of 20 min and the resulting mixture was heated to 98C for 45 min, then allowed to cool to rt. The reaction mixture was then cooled in an ice/H20 bath, MeCN (120 mL) and H20 (150 mL) were added followed by ruthenium(III) chloride (0.035 g, 0.166 mmol). Sodium periodate (53.4 g, 250 mmol) was then added slowly portion wise over 30 min. The resulting biphasic brown mixture was stirred vigorously while allowed to reach rt for a period of 1.5 h (internal temperature never increased above rt). TLC (50% EtOAc in heptanes) showed complete conversion. The crude mixture was then poured into ice H20 and extracted twice with 300 mL of Et20. The combined organic layers were washed once with 200 mL of sat. sodium bicarbonate, washed once with 200 mL of brine, dried over Na2S04; and concentrated by rotary evaporation to give (4S,5S)-4,5-dimethyl-l,3,2- dioxathiolane 2,2-dioxide (21.2 g, 139 mmol) as a red oil.

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (2S,3S)-Butane-2,3-diol.

Reference£º
Patent; AMGEN INC.; BROWN, Sean P.; LI, Yunxiao; LIZARZABURU, Mike Elias; LUCAS, Brian S.; PARAS, Nick A.; TAYGERLY, Joshua; VIMOLRATANA, Marc; WANG, Xianghong; YU, Ming; ZANCANELLA, Manuel; ZHU, Liusheng; GONZALEZ BUENROSTRO, Ana; LI, Zhihong; (279 pag.)WO2016/33486; (2016); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Discovery of (2S,3S)-Butane-2,3-diol

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (2S,3S)-Butane-2,3-diol.

As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 19132-06-0,(2S,3S)-Butane-2,3-diol, This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.19132-06-0

To a 500-mL, 3-necked-RBF (equipped with a H20-cooled reflux condenser and an HCl trap) was added (2s,3s)-(+)-2,3-butanediol (Aldrich; 15.00 mL, 166 mmol) and CC14 (120 mL). SOCl2, reagentplus (14.57 mL, 200 mmol) was then added drop wise via a syringe over a period of 20 min and the resulting mixture was heated to 98C for 45 min, then allowed to cool to rt. The reaction mixture was then cooled in an ice/H20 bath, MeCN (120 mL) and H20 (150 mL) were added followed by ruthenium(III) chloride (0.035 g, 0.166 mmol). Sodium periodate (53.4 g, 250 mmol) was then added slowly portion wise over 30 min. The resulting biphasic brown mixture was stirred vigorously while allowed to reach rt for a period of 1.5 h (internal temperature never increased above rt). TLC (50% EtOAc in heptanes) showed complete conversion. The crude mixture was then poured into ice H20 and extracted twice with 300 mL of Et20. The combined organic layers were washed once with 200 mL of sat. sodium bicarbonate, washed once with 200 mL of brine, dried over Na2S04; and concentrated by rotary evaporation to give (4S,5S)-4,5-dimethyl-l,3,2- dioxathiolane 2,2-dioxide (21.2 g, 139 mmol) as a red oil.

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (2S,3S)-Butane-2,3-diol.

Reference£º
Patent; AMGEN INC.; BROWN, Sean P.; LI, Yunxiao; LIZARZABURU, Mike Elias; LUCAS, Brian S.; PARAS, Nick A.; TAYGERLY, Joshua; VIMOLRATANA, Marc; WANG, Xianghong; YU, Ming; ZANCANELLA, Manuel; ZHU, Liusheng; GONZALEZ BUENROSTRO, Ana; LI, Zhihong; (279 pag.)WO2016/33486; (2016); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate