This type of reactivity has quickly become one of the cornerstones of modern catalysis .In a patent, Computed Properties of C3H8O2, name is (S)-Propane-1,2-diol, belongs to chiral-oxygen-ligands compound, introducing its new discovery. Computed Properties of C3H8O2
FucO, (S)-1,2-propanediol oxidoreductase, from Escherichia coli is involved in the anaerobic catabolic metabolism of l-fucose and l-rhamnose, catalyzing the interconversion of lactaldehyde to propanediol. The enzyme is specific for the S-enantiomers of the diol and aldehyde suggesting stereospecificity in catalysis. We have studied the enzyme kinetics of FucO with a spectrum of putative alcohol and aldehyde substrates to map the substrate specificity space. Additionally, for a more detailed analysis of the kinetic mechanism, pH dependence of catalysis, stereochemistry in hydride transfer, deuterium kinetic isotope effect of hydride transfer and effect of increasing solvent viscosity were also analyzed. The outcome of this study can be summarized as follows: FucO is highly stereospecific with the highest E-value measured to be 320 for the S-enantiomer of 1,2-propanediol. The enzyme is strictly regiospecific for oxidation of primary alcohols. The enzyme prefers short-chained (2-4 carbons) substrates and does not act on bulkier compounds such as phenyl-substituted alcohols. FucO is an ‘A-side’ dehydrogenase transferring the pro-R-hydrogen of NADH to the aldehyde substrate. The deuterium KIEs of kcat and k cat/KM were 1.9 and 4.2, respectively, illustrating that hydride transfer is partially rate limiting but also that other reaction steps contribute to rate limitation of catalysis. Combining the KIE results with the observed effects of increasing medium viscosity proposed a working model for the kinetic mechanism involving slow, rate limiting, product release and on-pathway conformational changes in the enzyme-nucleotide complexes.
However, they have proven to be challenging because of the mutual inactivation of both catalysts. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 4254-15-3
Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate