With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.19132-06-0,(2S,3S)-Butane-2,3-diol,as a common compound, the synthetic route is as follows.
To a 500-mL, 3-necked-RBF (equipped with a H20-cooled refluxcondenser and an HC1 trap) was added (2s,3s)-(+)-2,3-butanediol (Aldrich; 15.00mL, 166 mmol) and CC14 (120 mL). SOC12, reagentplus (14.57 mL, 200 mmol)was then added drop wise via a syringe over a period of 20 mm and the resultingmixture was heated to 98C for 45 mm, then allowed to cool to rt. The reactionmixture was then cooled in an ice/H20 bath, MeCN (120 mL) and H20 (150 mL) were added followed by ruthenium(III) chloride (0.035 g, 0.166 mmol). Sodium periodate (53.4 g, 250 mmol) was then added slowly portion wise over 30 mm. The resulting biphasic brown mixture was stirred vigorously while allowed toreach rt for a period of 1.5 h (internal temperature never increased above rt). TLC (50% EtOAc in heptanes) showed complete conversion. The cmde mixture was then poured into ice H20 and extracted twice with 300 mL of Et20. The combined organic layers were washed once with 200 mL of sat. sodium bicarbonate, washed once with 200 mL of brine, dried over Na2504, andconcentrated by rotary evaporation to give (45,55)-4,5-dimethyl-1,3,2- dioxathiolane 2,2-dioxide (21.2 g, 139 mmol) as a red oil.
19132-06-0 (2S,3S)-Butane-2,3-diol 439888, achiral-oxygen-ligands compound, is more and more widely used in various.