Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 56413-95-7, is researched, Molecular C6Cl2N4, about Syntheses and spectral properties of new dicyanopyrazine-related heterocycles from diaminomaleonitrile, the main research direction is dicyanopyrazine precursor fluorescent dye synthesis; quinoxaline dye preparation dicyanopyrazine precursor; furopyrazine dye preparation dicyanopyrazine precursor; pyrrolopyrazine dye preparation dicyanopyrazine precursor; pyrazinoporphyrazine dye preparation dicyanopyrazine precursor.Quality Control of 5,6-Dichloropyrazine-2,3-dicarbonitrile.
New dicyanopyrazine-related heterocycles such as quinoxalines, furopyrazines, pyrrolopyrazines, and pyrazinoporphyrazines were synthesized and their absorption and fluorescence spectra were correlated with their structures.
Here is just a brief introduction to this compound(56413-95-7)Quality Control of 5,6-Dichloropyrazine-2,3-dicarbonitrile, more information about the compound(5,6-Dichloropyrazine-2,3-dicarbonitrile) is in the article, you can click the link below.
Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate