Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Article, Dalton Transactions called One-dimensional single-helix coordination polymer self-assembled by a crown-ether appended-N-heteroacene radical anion, Author is Isoda, Kyosuke; Takahashi, Hinako; Mutoh, Yuichiro; Hoshino, Norihisa; Akutagawa, Tomoyuki, which mentions a compound: 56413-95-7, SMILESS is N#CC1=NC(Cl)=C(Cl)N=C1C#N, Molecular C6Cl2N4, Formula: C6Cl2N4.
A crown-ether appended N-heteroacene 1 was reduced in the presence of NaBPh4 to the radical anion 2 by accepting one electron transferred from both the cathode and BPh4- as a reductant. The obtained radical anion 2 can function as a radical anion ligand to bridge two sodium ions to self-assemble into one-dimensional helical coordination polymers.
This literature about this compound(56413-95-7)Formula: C6Cl2N4has given us a lot of inspiration, and I hope that the research on this compound(5,6-Dichloropyrazine-2,3-dicarbonitrile) can be further advanced. Maybe we can get more compounds in a similar way.
Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate