Let`s talk about compounds: 616-43-3

In some applications, this compound(616-43-3)Application In Synthesis of 3-Methyl-1H-pyrrole is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Application In Synthesis of 3-Methyl-1H-pyrrole. The fused heterocycle is formed by combining a benzene ring with a single heterocycle, or two or more single heterocycles. Compound: 3-Methyl-1H-pyrrole, is researched, Molecular C5H7N, CAS is 616-43-3, about Immunochemical Detection of Protein Modification Derived from Metabolic Activation of 8-Epidiosbulbin E Acetate. Author is Zhou, Shenzhi; Zhang, Na; Hu, Zixia; Lin, Dongju; Li, Weiwei; Peng, Ying; Zheng, Jiang.

Furanoid 8-epidiosbulbin E acetate (EEA) is one of the most abundant diterpenoid lactones in herbal medicine Dioscorea bulbifera L. (DB). Our early work proved that EEA could be metabolized to EEA-derived cis-enedial (EDE), a reactive intermediate, which is required for the hepatotoxicity observed in exptl. animals exposed to EEA. Also, we found that EDE could modify hepatic protein by reaction with thiol groups and/or primary amines of protein. The present study was inclined to develop polyclonal antibodies to detect protein modified by EDE. An immunogen was prepared by reaction of EDE with keyhole limpet hemocyanin (KLH), and polyclonal antibodies were raised in rabbits immunized with the immunogen. Antisera collected from the immunized rabbits demonstrated high titers evaluated by enzyme-linked immunosorbent assays (ELISAs). Immunoblot anal. showed that the polyclonal antibodies recognized EDE-modified bovine serum albumin (BSA) in a hapten load-dependent manner but did not cross-react with native BSA. Competitive inhibition experiments elicited high selectivity of the antibodies toward EDE-modified BSA. The antibodies allowed us to detect and enrich EDE-modified protein in liver homogenates obtained from EEA-treated mice. The developed immunoprecipitation technique, along with mass spectrometry, enabled us to succeed in identifying multiple hepatic proteins of animals given EEA. We have successfully developed polyclonal antibodies with the ability to recognize EDE-derived protein adducts, which is a unique tool for us to define the mechanisms of toxic action of EEA.

In some applications, this compound(616-43-3)Application In Synthesis of 3-Methyl-1H-pyrrole is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Final Thoughts on Chemistry for 616-43-3

In some applications, this compound(616-43-3)Application In Synthesis of 3-Methyl-1H-pyrrole is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《New synthesis of serotonin》. Authors are Noland, Wayland E.; Hovden, Robert A..The article about the compound:3-Methyl-1H-pyrrolecas:616-43-3,SMILESS:CC1=CNC=C1).Application In Synthesis of 3-Methyl-1H-pyrrole. Through the article, more information about this compound (cas:616-43-3) is conveyed.

Dropwise addition of a molar excess of nitroethylene to molten 5-benzyloxyindole at steam bath temperature 1.83 hrs. gave 3-(2-nitroethyl)-5-benzyloxyindole (I), m. 93.5-5.0° (CH2Cl2-ligroine), in 45% yield. Use of excess nitroethylene is desirable since unreacted 5-benzyloxyindole (36%) and 64% I form a eutectic mixture, m. 81-1.5°. Similar reactions of 5-benzyloxyindole with equimolar portions of β-nitrostyrene 6 hrs. and β-methyl-β-nitrostyrene for 22 hrs. gave 72 and 37% yields, resp., of 3-(1-phenyl-2-nitroethyl)-5-benzyloxyindole (II), platelets, m. 117-18° (alc.), and 3-(1-phenyl-2-nitropropyl)-5-benzyloxyindole (III), m. 152-2.5° (alc.). Hydrogenation at 2 atm. over PtO2 of I-III gave in high yields the corresponding tryptamines, isolated as the picrates. I gave 84% yield as reddish orange crystals, m. 231.5-2.0° (decomposition). III gave 94% yield, red crystals, m. 176-6.5° (alc.) and III gave 62% yield, red crystals, m. 213-15°. The tryptamine from I was characterized as the hydrochloride, m. 245-7° (decomposition). Hydrogenation of I at 2 atm. over 10% Pd-C resulted in concomitant reduction of the NO2 group and debenzylation to give 69% serotonin (IV) as the creatinine sulfate hydrate, m. 212-14°. This new synthesis of IV from 5-benzyloxyindole appeared to be higher in over-all yield than most reported methods. It was also simpler than previously described methods.

In some applications, this compound(616-43-3)Application In Synthesis of 3-Methyl-1H-pyrrole is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

What kind of challenge would you like to see in a future of compound: 3685-23-2

In some applications, this compound(3685-23-2)Quality Control of cis-4-Aminocyclohexane carboxylic acid is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Quality Control of cis-4-Aminocyclohexane carboxylic acid. The fused heterocycle is formed by combining a benzene ring with a single heterocycle, or two or more single heterocycles. Compound: cis-4-Aminocyclohexane carboxylic acid, is researched, Molecular C7H13NO2, CAS is 3685-23-2, about Competing fragmentation processes of β-substituted propanoate ions upon collision induced dissociation. Author is Le Blanc, Luc M.; Powers, Sean W.; Grossert, J. Stuart; White, Robert L..

Rationale : When subjected to collisional activation, gas-phase carboxylate ions typically undergo decarboxylation. However, alternative fragmentation processes dominate when the carboxylate group is located within certain structural motifs. In this work, the fragmentation processes of β-substituted carboxylate ions are characterized to improve correlations between reactivity and structure. Methods : Mass spectra were collected using both ion trap and triple quadrupole mass spectrometers operating in the neg. ion mode; collision induced dissociation (CID) of ions was used to study the relationship between product ions and the structures of their precursor ions. Quantum mech. computations were performed on a full range of reaction geometries at the MP2/6-311++G(2d,p)//B3LYP/6-31++G(2d,p) level of theory. Results : For a series of β-substituted carboxylate ions, a product ion corresponding to the anion of the β-substituent was obtained upon CID. Detailed computations indicated that decarboxylative elimination and at least one other fragmentation mechanism had feasible energetics for the formation of substituent anions differing in their gas-phase basicities. Predicted energetics for anti- and synperiplanar alignments in the transition structures for decarboxylative elimination correlated with the positions of crossover points in breakdown curves acquired for conformationally constrained ions. Conclusions : The feasibility of more than one mechanism was established for the fragmentation of β-substituted propanoates. The contribution of each mechanistic pathway to the formation of the substituent anion was influenced by structural variations and conformational constraints, but mostly depended on the nature of the substituent.

In some applications, this compound(3685-23-2)Quality Control of cis-4-Aminocyclohexane carboxylic acid is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Now Is The Time For You To Know The Truth About 56413-95-7

In some applications, this compound(56413-95-7)Product Details of 56413-95-7 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Preparation, Characterization, and FET Properties of Novel Dicyanopyrazinoquinoxaline Derivatives, published in 2004-06-10, which mentions a compound: 56413-95-7, mainly applied to cyanopyrazinoquinoxaline derivative preparation FET, Product Details of 56413-95-7.

A series of the title dicyanopyrazinoquinoxaline derivatives have been prepared and characterized by using single-crystal X-ray structure anal. and redox potential measurements. They have strong electron-accepting properties due to the pyrazinopyrazine skeletons as well as the cyano groups. Substituents can be easily introduced at the benzene ring and control the HOMO-LUMO energy gap and the mol. packing. They show clear n-type transistor properties in the FET devices.

In some applications, this compound(56413-95-7)Product Details of 56413-95-7 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Why Are Children Getting Addicted To 616-43-3

In some applications, this compound(616-43-3)Product Details of 616-43-3 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Product Details of 616-43-3. The fused heterocycle is formed by combining a benzene ring with a single heterocycle, or two or more single heterocycles. Compound: 3-Methyl-1H-pyrrole, is researched, Molecular C5H7N, CAS is 616-43-3, about Molecular composition of sedimentary humic acids from South West Iberian Peninsula: A multi-proxy approach. Author is de la Rosa, J. M.; Gonzalez-Perez, J. A.; Gonzalez-Vila, F. J.; Knicker, H.; Araujo, M. F..

The mol. structural features of humic acid (HA) fractions isolated from recent sediments from the estuaries and continental platform along the Huelva littoral (SW Iberian Peninsula, Spain) were studied using complementary anal. tools. The approach included elemental anal., solid state, 13C cross polarisation magic angle spinning NMR spectroscopy (13C CP-MAS NMR), pyrolysis gas chromatog.-mass spectrometry (Py-GC/MS) and stable C and N isotopic composition (δ13C, δ15N). The results point to the presence of vascular plant matter contributing to all the HAs, even those far from the coastal area. A contribution of lignocellulose material was detected from 13C NMR signals at 152 ppm (O-aryl C), 55 ppm (methoxyl C) and 33 ppm (alkyl chain) and confirmed by the presence of lignin derived structures (methoxy phenols) in the pyrolysis chromatograms. Nevertheless, the HAs from the westernmost part of the continental platform had the lowest aromatic and the highest C-alkyl abundance (13C NMR spectroscopy). These data, combined with low C/N and high H/C values, a relative enrichment in δ13C and the presence in the pyrolyzates of conspicuous n-alkyl nitrile and amide series, together with n-alkane/ene homologues, pointed towards a relevant marine (autochthonous) contribution to this sedimentary organic matter (OM). In contrast, HAs from sediments collected from the Tinto-Odiel River mouth and Guadiana Estuary areas revealed a major input of terrestrial OM. In general, the data support the idea that the HAs still contain valuable information about the signature of aliphatic and aromatic biomacromols. contributing to the deposited OM.

In some applications, this compound(616-43-3)Product Details of 616-43-3 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

New explortion of 616-43-3

In some applications, this compound(616-43-3)Application In Synthesis of 3-Methyl-1H-pyrrole is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Thermal reactions of organic nitrogen compound. I. I-Methylpyrrole》. Authors are Jacobson, I. A. Jr.; Heady, H. H.; Dinneen, G. U..The article about the compound:3-Methyl-1H-pyrrolecas:616-43-3,SMILESS:CC1=CNC=C1).Application In Synthesis of 3-Methyl-1H-pyrrole. Through the article, more information about this compound (cas:616-43-3) is conveyed.

A flow method was used at 475-700°. At 475-575° the reaction was a homogeneous 1st-order isomerization, 1-methylpyrrole → 2-methylpyrrole → 3-methylpyrrole. The Arrhenius equation for this reaction, based on the disappearance of 1-methylpyrrole, is k = 2.39 × 1012e(-54,800/RT). Above 575° there was decomposition to give a complex mixture of reaction products.

In some applications, this compound(616-43-3)Application In Synthesis of 3-Methyl-1H-pyrrole is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Discover the magic of the 56413-95-7

In some applications, this compound(56413-95-7)Safety of 5,6-Dichloropyrazine-2,3-dicarbonitrile is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Safety of 5,6-Dichloropyrazine-2,3-dicarbonitrile. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile, is researched, Molecular C6Cl2N4, CAS is 56413-95-7, about Multivalent Allyl-Substituted Macrocycles as Nonaggregating Building Blocks. Author is Husain, Ali; Ganesan, Asaithampi; Ghazal, Basma; Makhseed, Saad.

Based on the concept of dual-directionality, the synthesis of two novel zinc(II)-containing phthalocyanine (Pc-ene1) and azaphthalocyanine (AzaPc-ene1) macrocycles bearing dual directional (up/down) allyl moieties on their rims is reported. Their structural identification, i.e., NMR, FT-IR, UV-vis, MALDI-TOF spectral data, single crystal x-ray diffraction, and CHN elemental analyses, along with their nonaggregating behaviors in solvated media and crystalline forms has been confirmed.

In some applications, this compound(56413-95-7)Safety of 5,6-Dichloropyrazine-2,3-dicarbonitrile is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Decrypt The Mystery Of 616-43-3

In some applications, this compound(616-43-3)SDS of cas: 616-43-3 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Pyrrole Syntheses from Amino Ketones with Ketones and Ketone Esters》. Authors are Piloty, O.; Hirsch, P..The article about the compound:3-Methyl-1H-pyrrolecas:616-43-3,SMILESS:CC1=CNC=C1).SDS of cas: 616-43-3. Through the article, more information about this compound (cas:616-43-3) is conveyed.

The following pyrrole derivatives have been prepared by treating aqueous solutions of the HCl salts of amino ketones containing an excess of alk. with a ketone or ketone ester and allowing to stand a long time at a slightly elevated temperature in closed vessels. α-β’-Dimethylpyrrole, from Ac2NH2.HCl and AcMe; yield, 30%. α-Phenyl-β’-methylpyrrole, from 10 g. AcCH2NH2.HCl and 5 g. AcPh, m. 152°; yield, 1 g. α,β,β’-Trimethylpyrrole, from AcEt; yield, 28%. α-Ethyl-β,β’-dimethylpyrrole, b10 77-8° (yield, 0.4 g. from 14 g. AcCH3NH2.HCl and 10 g. Et2CO); picrjate, bright yellow, striated prisms, m. 122.5°. α,β,α’-Trimethylpyrrole, from AcCHMeNH2 and AcMe; yield, 50%. Some tetramethylpyrazine is formed in this reaction. AcCHMeNH2 and AcEt react only slowly and incompletely; the chief product is the pyrazine, but a little α,β,α’,β’-tetramethylpyrrole picrate (cf. Fischer and Bartholomäus, C. A., 7, 780) was isolated. Et α,β’-dimethylpyrrole-β-carboxylate, from AcCH2NH2 and AcCH2CO2Et. Monoethyl β-methylpyrrole-α’,β’-dicarboxylate, from 19 g. HO2CCOCH2CO2Et and 11 g. AcCH2NH2.HCl, monoclinic prisms, m. 196° (yield, 2-3 g.), converted by 20 hrs. b. with excess of 20% KOH into β-methylpyrrole-β’ (or α’)-carboxylic acid, flocks, m. 149°, losing CO2 and forming β-methylpyrrole, b11 45°. Monoethyl α,β-dimethylpyrrole-α’,β’-dicarboxylate, from AcCHMeNH2 and HO2CCOCH2CO2Et, prisms, m. 201° (loss of CO2). α,β-Dimethylpyrrole-β’ (or α’)-carboxylic acid, m. 188°. α,β-Dimethylpyrrole, b11 62°; picrate, bright yellow, felted needles, m. 146-5°; contrary to all other pyrrole derivatives, it has the comp. C18H21O7N5, i. e., 2 mols. pyrrole: 1 mol. picric acid.

In some applications, this compound(616-43-3)SDS of cas: 616-43-3 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

The influence of catalyst in reaction 3685-23-2

In some applications, this compound(3685-23-2)HPLC of Formula: 3685-23-2 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

HPLC of Formula: 3685-23-2. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: cis-4-Aminocyclohexane carboxylic acid, is researched, Molecular C7H13NO2, CAS is 3685-23-2, about Investigating the Stability of Double Head to Tail Dimers and Ribbons in Multicomponent Crystals of cis-4-Aminocyclohexanecarboxylic Acid with Water and Oxalic Acid. Author is Mora, Asiloe J.; Belandria, Lusbely M.; Avila, Edward E.; Seijas, Luis E.; Delgado, Gerzon E.; Miro, Aira; Almeida, Rafael; Brunelli, Michela; Fitch, Andrew N..

The current contribution aims to study the stability of commonly occurring motifs present in certain amino acid structures after introducing addnl. mols. to form multicomponent crystals. The crystal structures of the amino acid cis-4-aminocyclohexanecarboxylic acid hemihydrate I and dehydrate II forms and that of its oxalate salt cocrystd. with oxalic acid III, were studied employing a combination of techniques. Both single-crystal and powder x-ray diffraction were used to solve the structures, while temperature-control powder X-ray diffraction was used to follow the dehydration of I. Regardless of the added mols. that induce modifications of the intermol. interactions within the crystals, some recurring supramol. structures were identified: double head to tail dimers, graph symbol R22(16), and ribbons, graph symbol R22(16)R34(10). Stabilities of these supramol. motifs were studied using theor. modeling with DFT/B3LYP/6-31++G (d,p) and PM6-D2H calculations The theor. calculations reproduced the exptl. findings, confirming the extraordinary stability of these motifs. The mol. recognition of amino acid pairs to form double head to tail-dimers is undoubtedly the initial driving force for the crystal formation in all the three crystals studied.

In some applications, this compound(3685-23-2)HPLC of Formula: 3685-23-2 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

The influence of catalyst in reaction 616-43-3

In some applications, this compound(616-43-3)COA of Formula: C5H7N is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

COA of Formula: C5H7N. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: 3-Methyl-1H-pyrrole, is researched, Molecular C5H7N, CAS is 616-43-3, about Intermediate pyrolysis and product identification by TGA and Py-GC/MS of green microalgae and their extracted protein and lipid components. Author is Kebelmann, Katharina; Hornung, Andreas; Karsten, Ulf; Griffiths, Gareth.

The thermo-chem. conversion of green microalgae Chlamydomonas reinhardtii wild type (CCAP 11/32C), its cell wall deficient mutant C. reinhardtii CW15+ (CCAP 11/32CW15+) and Chlorella vulgaris (CCAP 211/11B) as well as their proteins and lipids was studied under conditions of intermediate pyrolysis. The microalgae were characterized for ultimate and gross chem. composition, lipid composition and extracted products were analyzed by Thermogravimetric anal. (TG/DTG) and Pyrolysis-gaschromatog./mass-spectrometry (Py-GC/MS). Proteins accounted for almost 50% and lipids 16-22 % of dry weight of cells with little difference in the lipid compositions between the C. reinhardtii wild type and the cell wall mutant. During TGA anal., each biomass exhibited three stages of decomposition, namely dehydration, devolatilization and decomposition of carbonaceous solids. Py-GC/MS anal. revealed significant protein derived compounds from all algae including toluene, phenol, 4-methylphenol, 1H-indole, 1H-indole-3methyl. Lipid pyrolysis products derived from C. reinhardtii wild type and C. reinhardtii CW15+ were almost identical and reflected the close similarity of the fatty acid profiles of both strains. Major products identified were phytol and phytol derivatives formed from the terpenoid chain of chlorophyll, benzoic acid alkyl ester derivative, benzenedicarboxylic acid alkyl ester derivative and squalene. In addition, octadecanoic acid octyl ester, hexadecanoic acid Me ester and hydrocarbons including heptadecane, 1-nonadecene and heneicosane were detected from C. vulgaris pyrolyzed lipids. These results contrast sharply with the types of pyrolytic products obtained from terrestrial lignocellulosic feedstocks and reveal that intermediate pyrolysis of algal biomass generates a range of useful products with wide ranging applications including bio fuels.

In some applications, this compound(616-43-3)COA of Formula: C5H7N is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate