Discovery of 616-43-3

As far as I know, this compound(616-43-3)Category: chiral-oxygen-ligands can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: 3-Methyl-1H-pyrrole( cas:616-43-3 ) is researched.Category: chiral-oxygen-ligands.Gatti, Carlo; Frigerio, Giovanni; Benincori, Tiziana; Brenna, Elisabetta; Sannicolo, Franco; Zotti, Gianni; Zecchin, Sandro; Schiavon, Gilberto published the article 《Steric and Electronic Effects in Methyl-Substituted 2,2′-Bipyrroles and Poly(2,2′-Bipyrrole)s: Part II. Theoretical Investigation on Monomers》 about this compound( cas:616-43-3 ) in Chemistry of Materials. Keywords: pyrrole bipyrrole substituted steric electronic effect. Let’s learn more about this compound (cas:616-43-3).

The effects of N- and Cβ-Me substitution in pyrrole and 2,2′-bipyrrole were investigated through ab initio calculations and Atoms in Mols. anal. of the resulting wave functions. Replacement of a hydrogen atom with a Me group in pyrroles lowers the ionization potential, with substitution at C3 being more efficient than N-substitution because of the larger release of π population to the ring in the former case. Full geometry optimization at RHF/6-31G** level and as a function of the torsion angle τ between two adjacent rings demonstrates that the increasing loss of planarity in the 2,2′-bipyrrole, N,N’-dimethyl-2,2′-bipyrrole, and 3,3′-dimethyl-2,2′-bipyrrole series, adversely affects the pos. contributions expected from Me substitution. An intramol. interaction energy model shows that the greater anti-planarization energy of N,N’-dimethyl-2,2′-bipyrrole, as compared to 3,3′-dimethyl-2,2′-bipyrrole, is due to the larger decrease in the stabilizing electrostatic term and to the larger increase in the destabilizing nonbonding contribution which occurs at τ = 0° in the former. Calculations on the corresponding monocations and anal. of new conductivity measures on substituted poly(2,2′-bipyrrole)s suggest that the ease in achieving local chain planarity in doped polypyrroles should be more closely correlated to the anti-planarization energies of the charged monomers rather than to anti-planarization energies of the neutral monomers.

As far as I know, this compound(616-43-3)Category: chiral-oxygen-ligands can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Top Picks: new discover of 56413-95-7

As far as I know, this compound(56413-95-7)Synthetic Route of C6Cl2N4 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Synthetic Route of C6Cl2N4. The fused heterocycle is formed by combining a benzene ring with a single heterocycle, or two or more single heterocycles. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile, is researched, Molecular C6Cl2N4, CAS is 56413-95-7, about Studies on herbicidal 2,3-dicyanopyrazines. Part II. Structure-activity relationships of herbicidal 5-ethylamino- and 5-propylamino-2,3-dicyanopyrazines. Author is Nakamura, Akira; Ataka, Toshiei; Segawa, Hirozo; Takeuchi, Yasutomo; Takematsu, Tetsuo.

Sixty-eight 6-substituted 5-ethylamino- and 5-propylamino-2,3-dicyanopyrazines were synthesized and their herbicidal activities against barnyard grass (Echinochloa crus-galii) were measured in pot tests. The most active compound was 2,3-dicyano-5-propylamino-6-(m-chlorophenyl)pyrazine  [72113-45-2]. The activities of the 2 series of compounds were analyzed quant. using the hydrophobic and steric parameters of substituents at the 6-position of the pyrazine ring and an indicator variable.

As far as I know, this compound(56413-95-7)Synthetic Route of C6Cl2N4 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Little discovery in the laboratory: a new route for 616-43-3

As far as I know, this compound(616-43-3)Recommanded Product: 616-43-3 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 616-43-3, is researched, Molecular C5H7N, about Scientific investigation of the paint and adhesive materials used in the Western Han dynasty polychromy terracotta army, Qingzhou, China, the main research direction is polychromy terracotta paint adhesive arcaheol China.Recommanded Product: 616-43-3.

A royal tomb of early period of the Western Han dynasty (206 B.C-8 A.D) was excavated by archaeologists in Qingzhou County, Shandong Province in 2006. Over 2000 polychromy terracotta soldiers, horses, chariots, servants etc. were unearthed from the tomb. All the terracotta figures are one quarter or one sixth as large as the livings, most of them were painted with well designed patterns. In order to gain complete information about the materials and techniques used for the polychromy on the terracotta army, five samples from the painted areas were taken. In addition, one sample from the area to adhere one leg to the polychromy horse body was also obtained. The anal. techniques applied include XRF, FTIR, Py-GC/MS and GC/MS. Chinese purple, cinnabar, lead red and ochre were used as pigments, while animal glue was identified as binding medium and adhesive in the polychromy terracotta army in the Han Dynasty. The results definitely will provide new evidence about the materials and technologies used in Han Dynasty. Especially, the binding medium identified is different in comparison with Qin Shihuang’s terracotta army (259-210 BC).

As far as I know, this compound(616-43-3)Recommanded Product: 616-43-3 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Chemical Research in 3685-23-2

As far as I know, this compound(3685-23-2)Computed Properties of C7H13NO2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Computed Properties of C7H13NO2. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: cis-4-Aminocyclohexane carboxylic acid, is researched, Molecular C7H13NO2, CAS is 3685-23-2, about Synthesis of analogs of N-(2-chloroethyl)-N’-(trans-4-methylcyclohexyl)-N-nitrosourea for evaluation as anticancer agents.

Of several nitrosourea derivatives [X(CH2)2N(NO)CONHR (X = Cl, F; R = substituted cyclohexyl, 2-methyl-1,3-dithian-5-yl or its S, S, S’, S’-tetraoxide)] prepared and tested against murine leukemia L210 almost all were active, giving cure rates ≥50% at ≤LD10 doses. In 4 of the 5 fluoroethyl analogs activity was clearly inferior to the corresponding chloroethyl compounds Most of the more active analogs contained a 4-substituted cyclohexyl group. Activity in relation to structure, partition coefficient, and cis-trans isomerism is discussed.

As far as I know, this compound(3685-23-2)Computed Properties of C7H13NO2 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Awesome Chemistry Experiments For 56413-95-7

As far as I know, this compound(56413-95-7)COA of Formula: C6Cl2N4 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

COA of Formula: C6Cl2N4. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile, is researched, Molecular C6Cl2N4, CAS is 56413-95-7, about The role of the size of aza-crown recognition moiety in azaphthalocyanine fluorescence sensors for alkali and alkaline earth metal cations.

A series of fluorescence sensors bearing one 1-aza-12-crown-4, 1-aza-15-crown-5, 1-aza-18-crown-6 or 1-aza-21-crown-7 as a recognition moiety and an aza-analog of phthalocyanine as a fluorophore was prepared All compounds absorbed and emitted light in the red region. Sensing properties based on intramol. charge transfer were studied via absorption and fluorescence titration experiments with alkali metal cations and alk. earth metal cations. Important relationships between aza-crown size and binding affinity were observed in the group of alkali metal cations. Affinity for lithium decreased in series from the smallest crown to the largest, 1-aza-15-crown-5 bound sodium and potassium similarly, and 1-aza-18-crown-6 had the highest affinity to potassium. Alk. earth metal cations were bound more tightly, which was obvious from more pronounced changes in the absorption spectra, and from the higher increase of fluorescence upon cation addition A limited size preference was observed in the group of alk. earth metal cations.

As far as I know, this compound(56413-95-7)COA of Formula: C6Cl2N4 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Can You Really Do Chemisty Experiments About 56413-95-7

As far as I know, this compound(56413-95-7)Product Details of 56413-95-7 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Product Details of 56413-95-7. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile, is researched, Molecular C6Cl2N4, CAS is 56413-95-7, about Metal-Cation Recognition in Water by a Tetrapyrazinoporphyrazine-Based Tweezer Receptor. Author is Lochman, Lukas; Svec, Jan; Roh, Jaroslav; Kirakci, Kaplan; Lang, Kamil; Zimcik, Petr; Novakova, Veronika.

A series of zinc azaphthalocyanines with two azacrowns in a rigid tweezer arrangement were prepared and the fluorescence sensing properties were studied. The size-driven recognition of alkali and alk. earth metal cations was significantly enhanced by the close cooperation of the two azacrown units, in which both donor nitrogen atoms need to be involved in analyte binding to switch the sensor on. The mono- or biphasic character of the binding isotherms, together with the binding stoichiometry and magnitude of association constants (KA), indicated specific complexation of particular analytes. Water solvation was shown to play an important role and resulted in a strong quenching of sensor fluorescence in the ON state. The lead compound was embedded into silica nanoparticles and advantageous sensing properties towards K+ were demonstrated in water (λF = 671 nm, apparent KA = 82 M-1, increase of 17×), even in the presence of (supra)physiol. concentrations of Na+ and Ca2+.

As far as I know, this compound(56413-95-7)Product Details of 56413-95-7 can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

A new synthetic route of 616-43-3

As far as I know, this compound(616-43-3)Computed Properties of C5H7N can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Computed Properties of C5H7N. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: 3-Methyl-1H-pyrrole, is researched, Molecular C5H7N, CAS is 616-43-3, about On the mechanism of the sensitized photooxygenation of pyrroles.

The mechanism of dye-sensitized photooxygenation reaction of pyrrole, its N-methyl, 2-methyl, 3-methyl, and N-phenyl derivatives as well as kryptopyrrole, was studied at low temperatures via 1H-NMR spectral data and H218O in various solvents. Endo-peroxide intermediates (I) undergo rapid ground-state reactions, leading to 5-hydroxy-Δ3- pyrrolinones by two mechanisms: internal rearrangement and reaction with water.

As far as I know, this compound(616-43-3)Computed Properties of C5H7N can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Chemistry Milestones Of 616-43-3

This literature about this compound(616-43-3)Quality Control of 3-Methyl-1H-pyrrolehas given us a lot of inspiration, and I hope that the research on this compound(3-Methyl-1H-pyrrole) can be further advanced. Maybe we can get more compounds in a similar way.

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Gardini, Gian P. researched the compound: 3-Methyl-1H-pyrrole( cas:616-43-3 ).Quality Control of 3-Methyl-1H-pyrrole.They published the article 《Simple oxidation products from 2- and 3-methylpyrrole and hydrogen peroxide》 about this compound( cas:616-43-3 ) in Ateneo Parmense, Sezione 1. Acta Bio-medica, Supplemento. Keywords: pyrrole oxidation; oxidation pyrrole; peroxide pyrrolyl. We’ll tell you more about this compound (cas:616-43-3).

2-Methylpyrrole (I) and 3-methylpyrrole (II) were subjected to oxidation with 36% H2O2. Thus, a mixture of I + H2O2 (molar ratio 1:1.4) in EtOH-Et2O was lef t at room temperature 10 days to yield 42% III, m. 154° (decomposition). Similarly, II was oxidized (molar ratio II-H2O2 1:2.5) 24 hr at 10° to yield 53% IV, m. 95-6° (sublimed 85°/0.5 mm). Ir spectral data were given.

This literature about this compound(616-43-3)Quality Control of 3-Methyl-1H-pyrrolehas given us a lot of inspiration, and I hope that the research on this compound(3-Methyl-1H-pyrrole) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Interesting scientific research on 616-43-3

This literature about this compound(616-43-3)Name: 3-Methyl-1H-pyrrolehas given us a lot of inspiration, and I hope that the research on this compound(3-Methyl-1H-pyrrole) can be further advanced. Maybe we can get more compounds in a similar way.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Synthesis of furan amines and their catalytic conversion into five-membered nitrogenous heterocycles》. Authors are Shuikin, N. I.; Petrov, A. D.; Glukhovtsev, V. G.; Bel’skii, I. F.; Skobtsova, G. E..The article about the compound:3-Methyl-1H-pyrrolecas:616-43-3,SMILESS:CC1=CNC=C1).Name: 3-Methyl-1H-pyrrole. Through the article, more information about this compound (cas:616-43-3) is conveyed.

CH2:CHCHO added to sylvan in AcOH in the presence of hydroquinone at 40° gave after 2 hrs. 65% 2-methyl-5-(3-oxopropyl)furan, b4 58°, n20D 1.4762, d20 1.0360; with 50% H2SO4 as a catalyst, the yield was 43%. The latter catalyst with crotonaldehyde similarly gave 53% 2-methyl-5-(1-methyl-3-oxopropyl)furan, b3 67°, 1.4730, 1.0093, while mesityl oxide gave 75% 2-methyl-5-(1,1-dimethyl-3-oxobutyl)furan, b2 61°, 1.4700, 0.9747. These carbonyl derivatives were hydrogenated in MeOH saturated with NH3 over Raney Ni at 100-50 atm. and 80° and gave: 2-methyl-5-(3-aminopropyl)-furan, b6 82°, 1.4840, 0.9758; 2-methyl-5-(1-methyl-3-amino-propyl)furan, b7 85°, 1.4800, 0.9591; 2-methyl-5-(1,1-dimethyl-3-aminobutyl)furan, b4 75°, 1.4741, 0.9365. The latter was hydrogenated at 250° over 15% Pt-asbestos to 2,4,4-trimethyl-5-butylpyrrolidine, b5 39°, 1.4444, 0.8319. Raman spectra of the products were reported.

This literature about this compound(616-43-3)Name: 3-Methyl-1H-pyrrolehas given us a lot of inspiration, and I hope that the research on this compound(3-Methyl-1H-pyrrole) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Brief introduction of 3685-23-2

This literature about this compound(3685-23-2)Recommanded Product: cis-4-Aminocyclohexane carboxylic acidhas given us a lot of inspiration, and I hope that the research on this compound(cis-4-Aminocyclohexane carboxylic acid) can be further advanced. Maybe we can get more compounds in a similar way.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Linear and cyclic peptides derived from p-aminobenzoic acid》. Authors are Langenbeck, Wolfgang; Weisbrod, Dieter.The article about the compound:cis-4-Aminocyclohexane carboxylic acidcas:3685-23-2,SMILESS:N[C@H]1CC[C@H](CC1)C(O)=O).Recommanded Product: cis-4-Aminocyclohexane carboxylic acid. Through the article, more information about this compound (cas:3685-23-2) is conveyed.

cf. CA 62, 13226b. The linear peptides N-carbobenzoxyglycyl-p-aminobenzoylglycyl-p-aminobenzoic acid (I), N-carbobenzoxy-ε-aminocaproyl-p-aminobenzoyl-ε-aminocaproic acid ethyl ester (II), and ε-aminocaproyl-p-aminobenzoyl-ε-aminocaproic acid (III) were obtained, using activated esters (method a) or the carbodiimide procedure (method b). The preparation of the cyclic peptides cyclo(ε-aminocapropyl-p-aminobenzoyl-ε-aminocaproyl-p-aminobenzoyl) (IV) and cyclo(11-aminoundecanoyl-p-aminobenzoyl) (V) was performed by cyclization of the corresponding linear peptides in diethyl phosphite with tetraethyl pyrophosphite as condensing agent. The formation of IV resulted probably from dimerization of the starting material. Because of the very small solubility of IV in all common solvents, it was impossible to determine the mol. weight p-Aminobenzoyl-ε-aminocaproic acid-HBr was prepared by hydrolysis of the N-carbobenzoxy compound To 4.1 g. N-carbobenzoxyglycyl-p-aminobenzoylglycine p-nitrophenyl ester in a mixture of 30 ml. tetrahydrofuran and 20 ml. Me2NCHO, a solution of 1.2 g. p-aminobenzoic acid and 0.35 g. NaOH in 10 ml. H2O was added. The mixture was refluxed 4 hrs. to yield 7.4% I, m. 297° (decomposition). For preparation of I using the mixed anhydride method, 3.3 g. N-carbobenzoxyglycyl-p-aminobenzoic acid, in 50 ml. tetrahydrofuran and 1.4 ml. Me3N, was treated with 1.31 ml. chlorocarbonic acid iso-Bu ester at -10°. To the reaction mixture, 2.75 g. glycyl-p-aminobenzoic acid-HBr in 20 ml. N NaOH was added and the mixture stirred 3 hrs. at 20° and 1 hr. at 40° to give 40% I. (Method a): To 3.8 g. carbobenzoxy-ε-aminocaproyl-p-aminobenzoic acid (VI) in 0.81 ml. pyridine and 50 ml. tetrahydrofuran, 1.35 ml. chlorocarbonic acid iso-Bu ester in 10 ml. tetrahydrofuran was added dropwise at -10° during 10 min., and stirring continued for 50 min. in the cold. ε-Aminocaproic acid ethyl ester-HCl (2 g.) in 10 ml. tetrahydrofuran and 0.81 ml. pyridine were added and the mixture was stirred 4 hrs. at 20° to give 28.8% II, m. 134°. (Method b) VI (3.8 g.) was dissolved in 50 ml. tetrahydrofuran, 2 g. ε-aminocaproic acid ethyl ester-HCl in 0.81 ml. pyridine and 2.1 g. dicyclohexylcarbodiimide in 5 ml. tetrahydrofuran added, and the mixture kept 24 hrs. at 20° to give 66.7% II. II (5.3 g.) was treated for 30 min. at 20° with 10 ml. HBr-HOAc to give 80.5% ε-aminocapropyl-p-aminobenzoyl-ε-aminocaproic acid ethyl ester-HBr (VII), m. 177-9°. VII (2.4 g.) was refluxed for 2 hrs. with 75 ml. Ba(OH)2 solution to give 7.2% III, m. 233° (decomposition). For cyclization, 1.324 g. ε-aminocaproyl-p-aminobenzoic acid-HBr (VIII) was dissolved in 1 l. diethyl phosphite, then 0.4 ml. pyridine and 4.85 ml. tetraethyl pyrophosphite added. The reaction mixture was stirred for 4 hrs. at 140° under N. Diethyl phosphite was distilled in vacuo, and the residue heated for 1 hr. with 100 ml. H2O and 1 l. MeOH. A white precipitate of linear oligopeptides with high mol. weight was filtered off, and 900 ml. H2O added to the filtrate, whereby further linear oligomers were precipitated, and removed by filtration. The filtrate was passed through an ion exchanger (Wofatit KPS 200, anionic, Wofatit L 150, cationic) and concentrated to 50 ml. in vacuo to give 22.6% IV, m. ∼380° (decomposition). Cyclization of VIII in the presence of tetraethyl pyrophosphite and 1.4 g. imidazole gave 23.2% IV. 11-Aminoundecanoyl-p-aminobenzoic acid-HBr (IX) [prepared in 94% yield from N-carbobenzoxy-11-aminoundecanoyl-p-aminobenzoic acid by hydrolysis with HBr-AcOH, m. 236-8° (decomposition)] (1.604 g.) in l. diethyl phosphite in the cold was treated with 0.4 ml. pyridine and 4.85 ml. tetraethyl pyrophosphite to give 23.6% V, m. 218-20°. Cyclization of IX with equivalent amounts of tetraethyl pyrophosphite and imidazole gave 21.7% IV. N-Carbobenzoxy-p-aminobenzoyl-ε-aminocaproic acid (3.8 g.) was hydrolyzed for 30 min. at 20° with 15 ml. HBr-AcOH to give 57.4% p-aminobenzoyl-ε-aminocaproic acid-HBr, m. 160°. N-Carbobenzoxy-11-aminoundecanoyl-p-aminobenzoic acid was hydrolyzed with HBr-AcOH to give 64.6% raw 11-aminoundecanoyl-p-aminobenzoic acid, m. 204-7°. p-Aminobenzoic acid was dissolved in AcOH and hydrogenated with PtO2 at 20° and atm. pressure. After 1/3 of the theoretical amount of H was absorbed, addnl. PtO2 was added. This procedure was repeated several times. When 80% of the theoretical amount of H was absorbed, the hydrogenation was stopped, and the reaction mixture worked up to give 20.9% cis-hexahydro-p-aminobenzoic acid.

This literature about this compound(3685-23-2)Recommanded Product: cis-4-Aminocyclohexane carboxylic acidhas given us a lot of inspiration, and I hope that the research on this compound(cis-4-Aminocyclohexane carboxylic acid) can be further advanced. Maybe we can get more compounds in a similar way.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate