Extracurricular laboratory: Synthetic route of 3685-23-2

From this literature《Highly selective preparation of trans-4-aminocyclohexanecarboxylic acid from cis-isomer over Raney nickel catalyst》,we know some information about this compound(3685-23-2)Formula: C7H13NO2, but this is not all information, there are many literatures related to this compound(3685-23-2).

Formula: C7H13NO2. Aromatic heterocyclic compounds can also be classified according to the number of heteroatoms contained in the heterocycle: single heteroatom, two heteroatoms, three heteroatoms and four heteroatoms. Compound: cis-4-Aminocyclohexane carboxylic acid, is researched, Molecular C7H13NO2, CAS is 3685-23-2, about Highly selective preparation of trans-4-aminocyclohexanecarboxylic acid from cis-isomer over Raney nickel catalyst. Author is Gobolos, Sandor; Banka, Zoltan; Toth, Zoltan; Szammer, Janos; Margitfalvi, Jozsef L..

4-Amino-benzoic acid was hydrogenated to 4-aminocyclohexanecarboxylic acid over alumina supported 5 weight% Ru and Rh catalysts. Complete ring saturation was achieved in 2 weight % NaOH-H2O at 80-100 °C, 10 MPa H2, and 5 h however, the ratio of trans/cis stereoisomers of the product was only between 1/3-1/1. The raw reaction mixture was further processed in the presence of a com. Raney nickel catalyst at 130°C, 100 bar H2 for 5 h. In this alkali-mediated isomerization the trans/cis isomer ratio was 7/3. The cis isomer was isolated by fractional crystallization, and then reacted on Raney nickel catalysts in 2%NaOH-H2O at 120-140°C, 1 MPa H2 for 5 h to obtain the trans isomer with a yield of ca. 70%. The two-step synthesis resulted in trans-4-aminocyclohexanecarboxylic acid with a yield above 90%. Catalytic tests were performed in a high-throughput reactor system equipped with 16 mini autoclaves.

From this literature《Highly selective preparation of trans-4-aminocyclohexanecarboxylic acid from cis-isomer over Raney nickel catalyst》,we know some information about this compound(3685-23-2)Formula: C7H13NO2, but this is not all information, there are many literatures related to this compound(3685-23-2).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

The important role of 56413-95-7

From this literature《Synthesis of pyrido[1′,2′:1,2]imidazo[4,5-b]pyrazines from 2,3-dichloro-5,6-dicyanopyrazine with 2-aminopyridines》,we know some information about this compound(56413-95-7)Synthetic Route of C6Cl2N4, but this is not all information, there are many literatures related to this compound(56413-95-7).

Most of the compounds have physiologically active properties, and their biological properties are often attributed to the heteroatoms contained in their molecules, and most of these heteroatoms also appear in cyclic structures. A Journal, Journal of Heterocyclic Chemistry called Synthesis of pyrido[1′,2′:1,2]imidazo[4,5-b]pyrazines from 2,3-dichloro-5,6-dicyanopyrazine with 2-aminopyridines, Author is Suzuki, Toshinobu; Nagae, Yasushi; Mitsuhashi, Keiryo, which mentions a compound: 56413-95-7, SMILESS is N#CC1=NC(Cl)=C(Cl)N=C1C#N, Molecular C6Cl2N4, Synthetic Route of C6Cl2N4.

Novel synthesis of the title compounds I (R = H, 6-, 7-, 8-, 9-Me, 8-Cl, 8-Br, 6-PhCH2O) by the facile cyclization between 2,3-dichloro-5,6-dicyanopyrazine and various 2-aminopyridines II under relatively mild conditions is described. The reactivity depended on the basicity of 2-aminopyridines.

From this literature《Synthesis of pyrido[1′,2′:1,2]imidazo[4,5-b]pyrazines from 2,3-dichloro-5,6-dicyanopyrazine with 2-aminopyridines》,we know some information about this compound(56413-95-7)Synthetic Route of C6Cl2N4, but this is not all information, there are many literatures related to this compound(56413-95-7).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Sources of common compounds: 3685-23-2

From this literature《Hydrogenation of 4-aminobenzoic acid on catalysts of the platinum group》,we know some information about this compound(3685-23-2)COA of Formula: C7H13NO2, but this is not all information, there are many literatures related to this compound(3685-23-2).

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: cis-4-Aminocyclohexane carboxylic acid(SMILESS: N[C@H]1CC[C@H](CC1)C(O)=O,cas:3685-23-2) is researched.Recommanded Product: 4553-62-2. The article 《Hydrogenation of 4-aminobenzoic acid on catalysts of the platinum group》 in relation to this compound, is published in Zhurnal Organicheskoi Khimii. Let’s take a look at the latest research on this compound (cas:3685-23-2).

The rate of 4-H2NC6H4-CO2H hydrogenation to cis-4-aminocyclohexanecarboxylic acid and isomerization of the latter to the trans acid at 90-170° and 80 atm increased in the order of catalysts Pd ∼ Pt < Ru ≪ Rh and was higher with metal on C than with metal black; these reaction rates decreased in the order of solvents H2O > dioxane > EtOH > Me2SO > cyclohexylamine, and with Ru/C and Rh/C, decreased in the order of mineral acids H2SO4 > H3PO4 > HCl. At 90° the product stereochem. was determined by the reduction mechanism, and not by the rate of the secondary isomerization; the cis-trans ratio decreased in the order Ru > Rh > Pt > Pd.

From this literature《Hydrogenation of 4-aminobenzoic acid on catalysts of the platinum group》,we know some information about this compound(3685-23-2)COA of Formula: C7H13NO2, but this is not all information, there are many literatures related to this compound(3685-23-2).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Now Is The Time For You To Know The Truth About 56413-95-7

From this literature《Low-Power Laser Ignition of an Antenna-Type Secondary Energetic Copper Complex: Synthesis, Characterization, Evaluation, and Ignition Mechanism Studies》,we know some information about this compound(56413-95-7)Formula: C6Cl2N4, but this is not all information, there are many literatures related to this compound(56413-95-7).

Formula: C6Cl2N4. The protonation of heteroatoms in aromatic heterocycles can be divided into two categories: lone pairs of electrons are in the aromatic ring conjugated system; and lone pairs of electrons do not participate. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile, is researched, Molecular C6Cl2N4, CAS is 56413-95-7, about Low-Power Laser Ignition of an Antenna-Type Secondary Energetic Copper Complex: Synthesis, Characterization, Evaluation, and Ignition Mechanism Studies. Author is Shem-Tov, Daniel; Petrutik, Natan; Wurzenberger, Maximilian H. H.; Meincke, Melanie; Flaxer, Eli; Tumanskii, Boris; Zhang, Lei; Dobrovetsky, Roman; Fleischer, Sharly; Klapotke, Thomas M.; Stierstorfer, Jorg.

In recent years, development of new energetic compounds and formulations, suitable for ignition with relatively low-power lasers, is a highly active and competitive field of research. The main goal of these efforts is focused on achieving and providing much safer solutions for various detonator and initiator systems. In this work, a new laser-ignitable compound, based on the 5,6-bis(ethylnitroamino)-N′2,N′3-dihydroxypyrazine-2,3-bis(carboximidamide) (DS3) proligand is prepared, characterized, and thermal and ignition properties are studied. This new energetic proligand was prepared in three steps, starting with 5,6-bis(ethylamino)-pyrazine-2,3-dicarbonitrile. Crystallog. studies of the DS3-derived Cu(II) complex (DS4) revealed a unique stacked antenna-type structure of the latter compound DS4 has an exothermal temperature of 154.5° and was calculated to exhibit a velocity of detonation of 6.36 km·s-1 and a detonation pressure of 15.21 GPa. DS4 showed properties of a secondary explosive, having sensitivity to impact, friction, and electrostatic discharge of 8 J, 360 N, and 12 mJ, resp. In order to study the mechanism of ignition by a laser (using a diode laser, 915 nm), a set of experiments are conducted that enabled to characterize a photothermal ignition mechanism. Furthermore, it was found that a single pulse, with a time duration of 1 ms and with a total energy of 4.6 mJ, was sufficient for achieving a consistent and full ignition of DS4. Dual-pulse experiments, with variable time intervals between the laser pulses, showed that DS4 undergoes ignition via a photothermal mechanism. Finally, calculating the chem. mechanism of the formation of the complex DS4 and modeling its anhydrous and hydrated crystal structures (d. functional theory calculations using Gaussian and HASEM software) allowed to pinpoint a more precise location of water mols. in exptl. crystallog. data. These results suggest that DS4 has potential for further development to a higher technol. readiness level and for integration into small-size safe detonator systems as for many civil, aerospace, and defense applications.

From this literature《Low-Power Laser Ignition of an Antenna-Type Secondary Energetic Copper Complex: Synthesis, Characterization, Evaluation, and Ignition Mechanism Studies》,we know some information about this compound(56413-95-7)Formula: C6Cl2N4, but this is not all information, there are many literatures related to this compound(56413-95-7).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Discovery of 56413-95-7

There is still a lot of research devoted to this compound(SMILES:N#CC1=NC(Cl)=C(Cl)N=C1C#N)Synthetic Route of C6Cl2N4, and with the development of science, more effects of this compound(56413-95-7) can be discovered.

Synthetic Route of C6Cl2N4. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile, is researched, Molecular C6Cl2N4, CAS is 56413-95-7, about Synthesis of pyrido[1′,2′:1,2]imidazo[4,5-b]pyrazines from 2-amino-3-chloro-5,6-dicyanopyrazine with substituted pyridines. Author is Mitsuhashi, Keiryo; Nagae, Yasushi; Suzuki, Toshinobu.

Novel synthesis of the title compounds by the cyclization between 2-amino-3-chloro-5,6-dicyanopyrazine (I) and various substituted pyridines is described. E.g., heating I with pyridines II (R = Me, Pr, Me3C, PhCH2, CONH2, CO2Me, Ph, 2-pyridyl) in DMF at 90° for 48 h gave 14-72% pyridoimidazopyrazines III.

There is still a lot of research devoted to this compound(SMILES:N#CC1=NC(Cl)=C(Cl)N=C1C#N)Synthetic Route of C6Cl2N4, and with the development of science, more effects of this compound(56413-95-7) can be discovered.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Brief introduction of 3685-23-2

There is still a lot of research devoted to this compound(SMILES:N[C@H]1CC[C@H](CC1)C(O)=O)Computed Properties of C7H13NO2, and with the development of science, more effects of this compound(3685-23-2) can be discovered.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: cis-4-Aminocyclohexane carboxylic acid, is researched, Molecular C7H13NO2, CAS is 3685-23-2, about Investigating the Stability of Double Head to Tail Dimers and Ribbons in Multicomponent Crystals of cis-4-Aminocyclohexanecarboxylic Acid with Water and Oxalic Acid.Computed Properties of C7H13NO2.

The current contribution aims to study the stability of commonly occurring motifs present in certain amino acid structures after introducing addnl. mols. to form multicomponent crystals. The crystal structures of the amino acid cis-4-aminocyclohexanecarboxylic acid hemihydrate I and dehydrate II forms and that of its oxalate salt cocrystd. with oxalic acid III, were studied employing a combination of techniques. Both single-crystal and powder x-ray diffraction were used to solve the structures, while temperature-control powder X-ray diffraction was used to follow the dehydration of I. Regardless of the added mols. that induce modifications of the intermol. interactions within the crystals, some recurring supramol. structures were identified: double head to tail dimers, graph symbol R22(16), and ribbons, graph symbol R22(16)R34(10). Stabilities of these supramol. motifs were studied using theor. modeling with DFT/B3LYP/6-31++G (d,p) and PM6-D2H calculations The theor. calculations reproduced the exptl. findings, confirming the extraordinary stability of these motifs. The mol. recognition of amino acid pairs to form double head to tail-dimers is undoubtedly the initial driving force for the crystal formation in all the three crystals studied.

There is still a lot of research devoted to this compound(SMILES:N[C@H]1CC[C@H](CC1)C(O)=O)Computed Properties of C7H13NO2, and with the development of science, more effects of this compound(3685-23-2) can be discovered.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Flexible application of in synthetic route 616-43-3

There is still a lot of research devoted to this compound(SMILES:CC1=CNC=C1)Recommanded Product: 616-43-3, and with the development of science, more effects of this compound(616-43-3) can be discovered.

The reaction of an aromatic heterocycle with a proton is called a protonation. One of articles about this theory is 《Hydrogenation of pyridine and α-picoline over Raney nickel-aluminum catalyst》. Authors are Shuikin, N. I.; Brusnikina, V. M..The article about the compound:3-Methyl-1H-pyrrolecas:616-43-3,SMILESS:CC1=CNC=C1).Recommanded Product: 616-43-3. Through the article, more information about this compound (cas:616-43-3) is conveyed.

Hydrogenation of pyridine at 200° in a flow system over Raney Ni-Al catalyst gave piperidine, its azeotropic mixture with H2O (b739 90-2°, n20D 1.4320, d20 0.9277), and 2-methylpyridine. At low feed rate there was also formed some 3-methylpyrrole, 10% 2-propylpiperidine, and possibly some N-cyclopentylpiperidine. Hydrogenation of 2-picoline gave 2-pipecoline and some 3-methylpyrrole.

There is still a lot of research devoted to this compound(SMILES:CC1=CNC=C1)Recommanded Product: 616-43-3, and with the development of science, more effects of this compound(616-43-3) can be discovered.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

What unique challenges do researchers face in 56413-95-7

There is still a lot of research devoted to this compound(SMILES:N#CC1=NC(Cl)=C(Cl)N=C1C#N)Category: chiral-oxygen-ligands, and with the development of science, more effects of this compound(56413-95-7) can be discovered.

Category: chiral-oxygen-ligands. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile, is researched, Molecular C6Cl2N4, CAS is 56413-95-7, about Low-Power Laser Ignition of an Antenna-Type Secondary Energetic Copper Complex: Synthesis, Characterization, Evaluation, and Ignition Mechanism Studies.

In recent years, development of new energetic compounds and formulations, suitable for ignition with relatively low-power lasers, is a highly active and competitive field of research. The main goal of these efforts is focused on achieving and providing much safer solutions for various detonator and initiator systems. In this work, a new laser-ignitable compound, based on the 5,6-bis(ethylnitroamino)-N′2,N′3-dihydroxypyrazine-2,3-bis(carboximidamide) (DS3) proligand is prepared, characterized, and thermal and ignition properties are studied. This new energetic proligand was prepared in three steps, starting with 5,6-bis(ethylamino)-pyrazine-2,3-dicarbonitrile. Crystallog. studies of the DS3-derived Cu(II) complex (DS4) revealed a unique stacked antenna-type structure of the latter compound DS4 has an exothermal temperature of 154.5° and was calculated to exhibit a velocity of detonation of 6.36 km·s-1 and a detonation pressure of 15.21 GPa. DS4 showed properties of a secondary explosive, having sensitivity to impact, friction, and electrostatic discharge of 8 J, 360 N, and 12 mJ, resp. In order to study the mechanism of ignition by a laser (using a diode laser, 915 nm), a set of experiments are conducted that enabled to characterize a photothermal ignition mechanism. Furthermore, it was found that a single pulse, with a time duration of 1 ms and with a total energy of 4.6 mJ, was sufficient for achieving a consistent and full ignition of DS4. Dual-pulse experiments, with variable time intervals between the laser pulses, showed that DS4 undergoes ignition via a photothermal mechanism. Finally, calculating the chem. mechanism of the formation of the complex DS4 and modeling its anhydrous and hydrated crystal structures (d. functional theory calculations using Gaussian and HASEM software) allowed to pinpoint a more precise location of water mols. in exptl. crystallog. data. These results suggest that DS4 has potential for further development to a higher technol. readiness level and for integration into small-size safe detonator systems as for many civil, aerospace, and defense applications.

There is still a lot of research devoted to this compound(SMILES:N#CC1=NC(Cl)=C(Cl)N=C1C#N)Category: chiral-oxygen-ligands, and with the development of science, more effects of this compound(56413-95-7) can be discovered.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Analyzing the synthesis route of 3685-23-2

There is still a lot of research devoted to this compound(SMILES:N[C@H]1CC[C@H](CC1)C(O)=O)SDS of cas: 3685-23-2, and with the development of science, more effects of this compound(3685-23-2) can be discovered.

El Moll, Hani; Black, Fiona A.; Wood, Christopher J.; Al-Yasari, Ahmed; Reddy Marri, Anil; Sazanovich, Igor V.; Gibson, Elizabeth A.; Fielden, John published the article 《Increasing p-type dye sensitised solar cell photovoltages using polyoxometalates》. Keywords: dye sensitized solar cell polyoxometalate photovoltage.They researched the compound: cis-4-Aminocyclohexane carboxylic acid( cas:3685-23-2 ).SDS of cas: 3685-23-2. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:3685-23-2) here.

Lindqvist polyoxometalate (POM) additives increase VOC in p-type DSSCs by up to 140%, yielding substantial efficiency gains for poorly matched dyes and redox mediators. For better dye/electrolyte combinations, these gains are typically outweighed by losses in JSC. Charge lifetime and transient IR measurements show that this is due to retardation of both recombination and electron transfer to the mediator, and a pos. shift in the NiO valence band edge. The POMs also show their own, limited sensitizing effect.

There is still a lot of research devoted to this compound(SMILES:N[C@H]1CC[C@H](CC1)C(O)=O)SDS of cas: 3685-23-2, and with the development of science, more effects of this compound(3685-23-2) can be discovered.

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Chemical Research in 3685-23-2

If you want to learn more about this compound(cis-4-Aminocyclohexane carboxylic acid)Product Details of 3685-23-2, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(3685-23-2).

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: cis-4-Aminocyclohexane carboxylic acid( cas:3685-23-2 ) is researched.Product Details of 3685-23-2.Biancalana, Lorenzo; Bresciani, Giulio; Marchetti, Fabio; Pampaloni, Guido published the article 《Serendipitous Formation of a Zwitterionic Imidazolium Molecule from α-Diimine with Glyoxal as Unusual Cyclization Agent》 about this compound( cas:3685-23-2 ) in ChemistrySelect. Keywords: bis carboxycyclohexyl imidazole preparation; aminocyclohexane carboxylic acid glyoxal cyclization. Let’s learn more about this compound (cas:3685-23-2).

The serendipitous discovery of the unprecedented route to a zwitterionic imidazolium mol. with the two nitrogen atoms substituted with 4-cyclohexanecarboxylic acid was reported. To build the five-membered ring, glyoxal played the double role of source for C2 and unusually C1 units, the latter via thermal decomposition afforded carbon monoxide as side-product. The product was characterized by elemental anal., multinuclear NMR, IR and ESI-MS spectroscopy.

If you want to learn more about this compound(cis-4-Aminocyclohexane carboxylic acid)Product Details of 3685-23-2, you may wish to communicate with the author of the article,or consult the relevant literature related to this compound(3685-23-2).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate