The origin of a common compound about 56413-95-7

From this literature《Comparison of aggregation properties and photodynamic activity of phthalocyanines and azaphthalocyanines》,we know some information about this compound(56413-95-7)Safety of 5,6-Dichloropyrazine-2,3-dicarbonitrile, but this is not all information, there are many literatures related to this compound(56413-95-7).

Kostka, Miroslav; Zimcik, Petr; Miletin, Miroslav; Klemera, Petr; Kopecky, Kamil; Musil, Zbynek published the article 《Comparison of aggregation properties and photodynamic activity of phthalocyanines and azaphthalocyanines》. Keywords: phthalocyanine preparation aggregation photodynamic property; azaphthalocyanine preparation aggregation photodynamic property.They researched the compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile( cas:56413-95-7 ).Safety of 5,6-Dichloropyrazine-2,3-dicarbonitrile. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:56413-95-7) here.

Phthalocyanines (Pc) and their aza-analogs azaphthalocyanines (AzaPc) (tetrapyrazinoporphyrazines) with eight n-octylsulfanyl or tert-butylsulfanyl peripheral substituents and different central metals (Mg, Zn, metal-free) were synthesized. Dimerization constants Kd and absorption spectra of pure monomeric and dimeric magnesium complexes in toluene were calculated using series of absorbances at different concentrations The bulky tert-butylsulfanyl substituents were found to be much better inhibitors of aggregation than long alkyl chains. Also Pc are less aggregated in organic solvents then AzaPc, short explanation is given. Singlet oxygen production of Pc and AzaPc was compared using dye-sensitized photooxidation of 1,3-diphenylisobenzofuran in pyridine. Both Pc and AzaPc showed similar activity not dependent on type of peripheral substitution. Zinc complexes of both Pc and AzaPc exceeded the magnesium ones and metal-free dyes in singlet oxygen production approx. twice.

From this literature《Comparison of aggregation properties and photodynamic activity of phthalocyanines and azaphthalocyanines》,we know some information about this compound(56413-95-7)Safety of 5,6-Dichloropyrazine-2,3-dicarbonitrile, but this is not all information, there are many literatures related to this compound(56413-95-7).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

What kind of challenge would you like to see in a future of compound: 616-43-3

From this literature《Analytical pyrolysis and thermally assisted hydrolysis and methylation of EUROSOIL humic acid samples – A key to their source》,we know some information about this compound(616-43-3)Product Details of 616-43-3, but this is not all information, there are many literatures related to this compound(616-43-3).

So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic.Buurman, P.; Nierop, K. G. J.; Kaal, J.; Senesi, N. researched the compound: 3-Methyl-1H-pyrrole( cas:616-43-3 ).Product Details of 616-43-3.They published the article 《Analytical pyrolysis and thermally assisted hydrolysis and methylation of EUROSOIL humic acid samples – A key to their source》 about this compound( cas:616-43-3 ) in Geoderma. Keywords: humic acid Eurosoil aliphaticity lignin. We’ll tell you more about this compound (cas:616-43-3).

Humic acids have been widely investigated by spectroscopic methods, especially NMR and FTIR, and they are known to show significant differences according to their origin. Low resolution methods such as NMR and FTIR, however cannot easily distinguish different input sources or establish relations between SOM chem. and vegetation or land use in general. High resolution methods, such as anal. pyrolysis and pyrolysis combined with methylation do offer such possibilities. Therefore, HAs from five reference soils called the Eurosoils, including a Vertic Cambisol (E1, Italy), a Rendzina (E2, Greece), a Dystic Cambisol (E3, Great Britain), an Orthic Luvisol (E4, France) and an Orthic Podzol (E5, Germany), that were previously characterized a.o. by NMR, FTIR and ESR, were also analyzed by pyrolysis-gas chromatog./mass spectrometry (Py-GC/MS) and thermally assisted hydrolysis and methylation (THM) and subsequent anal. by GC/MS. The Orthic Podzol sample showed the largest aliphaticity, and the strongest degradation of aliphatics and lignin. The Dystric Cambisol featured the least decomposed HA, which was reflected by a large content of long-chain alkanes, and little lignin degradation Both the Dystric Cambisol and the Orthic Luvisol HAs contained a significant amount of microbial organic matter. Polyaromatics, which indicate the presence of charred material, were most abundant in the Vertic Cambisol and the Podzol HAs and lowest in the Dystric Cambisol and the Rendzina HAs. THM was able to distinguish between the various vegetations/land uses. Although quantifications by NMR and py-GC/MS are essentially different, the general results largely coincided. NMR appears to underestimate aromaticity and overestimate aliphaticity, but a mol. mixing model yielded reasonable correlations between NMR and pyrolysis data. Classification by degradation state’ based on py-GC/MS largely coincided with acidity determined by titration, but FTIR data did not coincide. Py-GC/MS, with its much larger resolution, is a better tool to distinguish effects of vegetation, microbial input, and degradation HA’s produce the same variety of compounds upon pyrolysis as total SOM extracts and are therefore chem. not more simple than SOM. HA chem., however can be understood in the light of land use history and SOM dynamics.

From this literature《Analytical pyrolysis and thermally assisted hydrolysis and methylation of EUROSOIL humic acid samples – A key to their source》,we know some information about this compound(616-43-3)Product Details of 616-43-3, but this is not all information, there are many literatures related to this compound(616-43-3).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Brief introduction of 56413-95-7

From this literature《New fused nitrogen-rich heterocycles from 5,6-dichloropyrazine-2,3-dicarbonitrile》,we know some information about this compound(56413-95-7)Electric Literature of C6Cl2N4, but this is not all information, there are many literatures related to this compound(56413-95-7).

Electric Literature of C6Cl2N4. The reaction of aromatic heterocyclic molecules with protons is called protonation. Aromatic heterocycles are more basic than benzene due to the participation of heteroatoms. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile, is researched, Molecular C6Cl2N4, CAS is 56413-95-7, about New fused nitrogen-rich heterocycles from 5,6-dichloropyrazine-2,3-dicarbonitrile. Author is Ried, Walter; Tsiotis, Georgios.

The reaction of the title compound with amines gave 34-82% pyrazines I (R = morpholino, piperidino, 1-pyrrolidinyl, Et2N, Me2N; RR = R1N(CH2)nNR1, R1 = Et, Ph, PhCH2, n = 2, R1 = Et, n = 3) and II (R2 = R3 = H, Me; R2 = H, R3 = Me, Cl; R2 = Me, R3 = Cl), which, upon treatment with N2H4, gave 25-61% III-V.

From this literature《New fused nitrogen-rich heterocycles from 5,6-dichloropyrazine-2,3-dicarbonitrile》,we know some information about this compound(56413-95-7)Electric Literature of C6Cl2N4, but this is not all information, there are many literatures related to this compound(56413-95-7).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Some scientific research about 616-43-3

From this literature《Fractionation and identification of organic nitrogen species from bio-oil produced by fast pyrolysis of sewage sludge》,we know some information about this compound(616-43-3)Electric Literature of C5H7N, but this is not all information, there are many literatures related to this compound(616-43-3).

Electric Literature of C5H7N. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 3-Methyl-1H-pyrrole, is researched, Molecular C5H7N, CAS is 616-43-3, about Fractionation and identification of organic nitrogen species from bio-oil produced by fast pyrolysis of sewage sludge. Author is Cao, Jing-Pei; Zhao, Xiao-Yan; Morishita, Kayoko; Wei, Xian-Yong; Takarada, Takayuki.

Pyrolysis of sewage sludge was performed at 500° and a sweeping gas flow rate of 300 cm3/min in a drop tube furnace. Liquid fraction (i.e., bio-oil) from the sewage sludge pyrolysis was separated by silica-gel column chromatog. (SGCC) with different solvents, including mixed solvents, as eluants. Alkanenitriles (C13-C18), oleamide, alkenenitrile, fatty acid amides and aromatic nitrogen species were fractionated from the bio-oil by SGCC and analyzed with a gas chromatog./mass spectrometry (GC/MS). Most of the GC/MS-detectable organic nitrogen species (ONSs) are lactams, amides and N-heterocyclic compounds, among which acetamide is the most abundant. N-heterocyclics with 1-3 rings, including pyrrole, pyridine, indole, benzoimidazole, carbazole, norharman and harman, were observed The lactams detected include pyrrolidin-2-one, succinimide, phthalimide, glutarimide, piperidin-2-one and 3-isobutylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione, all of which should be formed via decarboxylation and cyclization of γ- and δ-amino acids. Such a procedure provides an effective approach to fractionation and identification of ONSs from bio-oil produced by fast pyrolysis of sewage sludge.

From this literature《Fractionation and identification of organic nitrogen species from bio-oil produced by fast pyrolysis of sewage sludge》,we know some information about this compound(616-43-3)Electric Literature of C5H7N, but this is not all information, there are many literatures related to this compound(616-43-3).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

An update on the compound challenge: 56413-95-7

From this literature《Studies on herbicidal 2,3-dicyanopyrazines. Part III. Structure-activity relationship in herbicidal activity of 5-chloro-2,3-dicyanopyrazines against barnyardgrass (Echinochloa curs-galli)》,we know some information about this compound(56413-95-7)Reference of 5,6-Dichloropyrazine-2,3-dicarbonitrile, but this is not all information, there are many literatures related to this compound(56413-95-7).

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Studies on herbicidal 2,3-dicyanopyrazines. Part III. Structure-activity relationship in herbicidal activity of 5-chloro-2,3-dicyanopyrazines against barnyardgrass (Echinochloa curs-galli), published in 1983-12-31, which mentions a compound: 56413-95-7, Name is 5,6-Dichloropyrazine-2,3-dicarbonitrile, Molecular C6Cl2N4, Reference of 5,6-Dichloropyrazine-2,3-dicarbonitrile.

The herbicidal activities of 6-substituted 2,3-dicyano-5-chloropyrazines were evaluated and correlated with the previously reported substituent parameters π (hydrophobicity) and σp (Hansch, A., et al., 1973). Parameters π and π2 indicate that the hydrophobicity of the mol. is involved in the translocation of these compounds to the target site. The activity decreases with increasing electron-withdrawing property of the 6-substituent. The herbicidal activity varied parabolically with the change in π.

From this literature《Studies on herbicidal 2,3-dicyanopyrazines. Part III. Structure-activity relationship in herbicidal activity of 5-chloro-2,3-dicyanopyrazines against barnyardgrass (Echinochloa curs-galli)》,we know some information about this compound(56413-95-7)Reference of 5,6-Dichloropyrazine-2,3-dicarbonitrile, but this is not all information, there are many literatures related to this compound(56413-95-7).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Something interesting about 616-43-3

From this literature《Optimised coagulation using aluminium sulfate for the removal of dissolved organic carbon》,we know some information about this compound(616-43-3)Name: 3-Methyl-1H-pyrrole, but this is not all information, there are many literatures related to this compound(616-43-3).

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: 3-Methyl-1H-pyrrole, is researched, Molecular C5H7N, CAS is 616-43-3, about Optimised coagulation using aluminium sulfate for the removal of dissolved organic carbon.Name: 3-Methyl-1H-pyrrole.

Coagulation experiments at pH values ranging from 3 to 7 were conducted on raw water samples from four Australian reservoirs-Hope Valley, Myponga, Moorabool and Mt Zero-to assess the removal of natural organic matter (NOM) with alum. The aim was to characterize the NOM in these water sources that is highly recalcitrant to removal by alum coagulation. The selection of these water sources covered a range in raw water quality varying in inorganic and organic composition and character. NOM in both raw and treated waters was characterized by several techniques including specific UV absorbance (SUVA), high performance size exclusion chromatog. (HPSEC) and pyrolysis-gas chromatog. mass spectrometry (Py-GC-MS). The results can provide better understanding of the removal limitations of each treatment step and the knowledge will allow design engineers to select a suitable combined treatment process for optimum NOM removal. Despite the fact that the organic character of the four source waters were different, results showed that after optimized alum coagulation all four waters had a similar character. The mol. weight distribution anal. (HPSEC) indicated alum coagulation preferentially removed the higher mol. weight UV absorbing compounds while those remaining in the treated waters had the properties of lower apparent mol. weights (about 500-700 Daltons) and less UV absorbance. Py-GC-MS analyses of NOM in these waters before and after treatment indicated that polysaccharides and their derivatives are recalcitrant to removal with alum coagulation. Generally, the findings indicate that the character of the NOM is an important factor in determining its treatability.

From this literature《Optimised coagulation using aluminium sulfate for the removal of dissolved organic carbon》,we know some information about this compound(616-43-3)Name: 3-Methyl-1H-pyrrole, but this is not all information, there are many literatures related to this compound(616-43-3).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Why do aromatic interactions matter of compound: 56413-95-7

From this literature《One-dimensional single-helix coordination polymer self-assembled by a crown-ether appended-N-heteroacene radical anion》,we know some information about this compound(56413-95-7)Electric Literature of C6Cl2N4, but this is not all information, there are many literatures related to this compound(56413-95-7).

Isoda, Kyosuke; Takahashi, Hinako; Mutoh, Yuichiro; Hoshino, Norihisa; Akutagawa, Tomoyuki published the article 《One-dimensional single-helix coordination polymer self-assembled by a crown-ether appended-N-heteroacene radical anion》. Keywords: heteroacene crown ether radical anion preparation crystal mol structure; dicyanopentaoxacyclopentadecinopyrazinoquinoxaline preparation crystal mol structure reaction alkali tetraphenylborate.They researched the compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile( cas:56413-95-7 ).Electric Literature of C6Cl2N4. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:56413-95-7) here.

A crown-ether appended N-heteroacene 1 was reduced in the presence of NaBPh4 to the radical anion 2 by accepting one electron transferred from both the cathode and BPh4- as a reductant. The obtained radical anion 2 can function as a radical anion ligand to bridge two sodium ions to self-assemble into one-dimensional helical coordination polymers.

From this literature《One-dimensional single-helix coordination polymer self-assembled by a crown-ether appended-N-heteroacene radical anion》,we know some information about this compound(56413-95-7)Electric Literature of C6Cl2N4, but this is not all information, there are many literatures related to this compound(56413-95-7).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Derivation of elementary reaction about 56413-95-7

From this literature《Effective Monofunctional Azaphthalocyanine Photosensitizers for Photodynamic Therapy》,we know some information about this compound(56413-95-7)Recommanded Product: 5,6-Dichloropyrazine-2,3-dicarbonitrile, but this is not all information, there are many literatures related to this compound(56413-95-7).

Recommanded Product: 5,6-Dichloropyrazine-2,3-dicarbonitrile. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: 5,6-Dichloropyrazine-2,3-dicarbonitrile, is researched, Molecular C6Cl2N4, CAS is 56413-95-7, about Effective Monofunctional Azaphthalocyanine Photosensitizers for Photodynamic Therapy. Author is Zimcik, Petr; Miletin, Miroslav; Novakova, Veronika; Kopecky, Kamil; Nejedla, Marcela; Stara, Vendula; Sedlackova, Katerina.

In this work we present a rational design of the active part of third generation photosensitizers for photodynamic therapy based on phthalocyanine and an azaphthalocyanine core. The preferred zinc complexes of the AAAB type that contain bulky tert-butylsulfanyl substituents (A) and one carboxy group (B) have been synthesized by statistical condensation and fully characterized. The tetramerization was performed using magnesium(ii) butoxide followed by demetalation and insertion of ZnII. Compound 1 synthesized from 4,5-bis(tert-butylsulfanyl)phthalonitrile (A) and 2,3-dicyanoquinoxaline-6-carboxylic acid (B) exerted very promising photophys. properties (Q-band absorption at 726 nm, ε = 140000 M-1 cm-1), which allowed strong absorption of light at long wavelengths where the penetration of the light through human tissues is deeper. The very high singlet oxygen quantum yield of 1 (ΦΔ = 0.80) assures efficient photosensitization. As a result of bulky peripheral substituents, compound 1 shows good solubility in organic solvents with a low degree of aggregation, which makes it potentially viable for noncomplicated modification. One carboxy group in the final structure of 1 allows simple binding to possible carriers. This compound is suitable for binding to targeting moieties to form the highly active part of a third-generation photosensitizer.

From this literature《Effective Monofunctional Azaphthalocyanine Photosensitizers for Photodynamic Therapy》,we know some information about this compound(56413-95-7)Recommanded Product: 5,6-Dichloropyrazine-2,3-dicarbonitrile, but this is not all information, there are many literatures related to this compound(56413-95-7).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Some scientific research tips on 3685-23-2

From this literature《Knoevenagel Reaction. Kinetic study of the reaction of (+)-3-methyl-cyclohexanone with malononitrile》,we know some information about this compound(3685-23-2)Formula: C7H13NO2, but this is not all information, there are many literatures related to this compound(3685-23-2).

Formula: C7H13NO2. Aromatic compounds can be divided into two categories: single heterocycles and fused heterocycles. Compound: cis-4-Aminocyclohexane carboxylic acid, is researched, Molecular C7H13NO2, CAS is 3685-23-2, about Knoevenagel Reaction. Kinetic study of the reaction of (+)-3-methyl-cyclohexanone with malononitrile. Author is Prout, Franklin S.; Beaucaire, Victor D.; Dyrkacz, Gary R.; Koppes, William M.; Kuznicki, Robert E.; Marlewski, Theordore A.; Pienkowski, James J.; Puda, Jacqueline M..

The condensation of malononitrile with (+)-3-methylcyclohexanone produced an 80-85% yield of (-)-3-methylcyclohexylidenemalononitrile. The reaction, followed polarimetrically in aqueous alc., is kinetically second order and efficiently catalyzed by weak bases (ω-amino acids, cyclic amino acids, NH4OAc) furnishing solutions having an apparent pH 7.5-8.0. With β-alanine as catalyst, the Ea was 7.6 kcal/mole compared to 11 kcal/mole uncatalyzed. Stronger bases (Barbital, NaOAc, LOAc, KF, piperidine) effect more rapid condensation but poorer kinetics because of telomerization of malononitrile at the higher pHs.

From this literature《Knoevenagel Reaction. Kinetic study of the reaction of (+)-3-methyl-cyclohexanone with malononitrile》,we know some information about this compound(3685-23-2)Formula: C7H13NO2, but this is not all information, there are many literatures related to this compound(3685-23-2).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate

Interesting scientific research on 616-43-3

From this literature《Immunochemical Detection of Protein Modification Derived from Metabolic Activation of 8-Epidiosbulbin E Acetate》,we know some information about this compound(616-43-3)Synthetic Route of C5H7N, but this is not all information, there are many literatures related to this compound(616-43-3).

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 616-43-3, is researched, Molecular C5H7N, about Immunochemical Detection of Protein Modification Derived from Metabolic Activation of 8-Epidiosbulbin E Acetate, the main research direction is immunoassay epidiosbulbin E acetate modified protein.Synthetic Route of C5H7N.

Furanoid 8-epidiosbulbin E acetate (EEA) is one of the most abundant diterpenoid lactones in herbal medicine Dioscorea bulbifera L. (DB). Our early work proved that EEA could be metabolized to EEA-derived cis-enedial (EDE), a reactive intermediate, which is required for the hepatotoxicity observed in exptl. animals exposed to EEA. Also, we found that EDE could modify hepatic protein by reaction with thiol groups and/or primary amines of protein. The present study was inclined to develop polyclonal antibodies to detect protein modified by EDE. An immunogen was prepared by reaction of EDE with keyhole limpet hemocyanin (KLH), and polyclonal antibodies were raised in rabbits immunized with the immunogen. Antisera collected from the immunized rabbits demonstrated high titers evaluated by enzyme-linked immunosorbent assays (ELISAs). Immunoblot anal. showed that the polyclonal antibodies recognized EDE-modified bovine serum albumin (BSA) in a hapten load-dependent manner but did not cross-react with native BSA. Competitive inhibition experiments elicited high selectivity of the antibodies toward EDE-modified BSA. The antibodies allowed us to detect and enrich EDE-modified protein in liver homogenates obtained from EEA-treated mice. The developed immunoprecipitation technique, along with mass spectrometry, enabled us to succeed in identifying multiple hepatic proteins of animals given EEA. We have successfully developed polyclonal antibodies with the ability to recognize EDE-derived protein adducts, which is a unique tool for us to define the mechanisms of toxic action of EEA.

From this literature《Immunochemical Detection of Protein Modification Derived from Metabolic Activation of 8-Epidiosbulbin E Acetate》,we know some information about this compound(616-43-3)Synthetic Route of C5H7N, but this is not all information, there are many literatures related to this compound(616-43-3).

Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate