The transformation of simple hydrocarbons into more complex and valuable products via catalytic C–H bond functionalisation has revolutionised modern synthetic chemistry. An article , which mentions category: chiral-oxygen-ligands, molecular formula is C4H10O2. The compound – (2S,3S)-Butane-2,3-diol played an important role in people’s production and life., category: chiral-oxygen-ligands
Density functional theory (Becke3LYP/6-311++G**) conformational analysis was carried out for all positional butanediol isomers. Taking into account the relative populations of the most stable conformers at 298.15 K, the weighted mean enthalpies of each butanediol isomer in the gas state were computed. Combining these results with the experimental values for the enthalpies of vaporization at 298.15 K, an estimate of the enthalpy of each of the butanediol isomers in the liquid state was obtained and discussed. The insight into the structural changes at the molecular level from the isolated molecule to the condensed state was improved by an infrared spectroscopy study in the OH stretching region, which was carried out for a wide range of concentrations of carbon tetrachloride solutions and pure liquids. The spectroscopic studies essentially confirmed the results derived from the combination of the computational and calorimetric studies.
However, they have proven to be challenging because of the mutual inactivation of both catalysts. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 19132-06-0
Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate