Continuously updated synthesis method about 1,5-Diphenylpenta-1,4-dien-3-one

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. 538-58-9, We look forward to the emergence of more reaction modes in the future.

In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 538-58-9,1,5-Diphenylpenta-1,4-dien-3-one, as follows.538-58-9

General procedure: To a stirred solution of indole 1a (59 mg, 0.5 mmol) and chalcone 2a (115 mg, 0.55 mmol) in MeCN (2.0mL) was added a solution of Br2 (0.00077 mL) in MeCN (0.5 mL), and the mixture was stirred for 7.0 h at 50 C. After 1a was consumed, as indicated by TLC, the reaction mixture was quenched with saturated aqueous Na2S2O3 (0.2mL) and water (10.0 mL), and extracted with CH2Cl2 three times. The residue obtained after evaporation of the solvent was purified by column chromatography on silica gel (petroleum ether-ethyl acetate = 30:1, v/v) to afford adduct 3a as a white solid (151 mg, 93% yield)., 538-58-9

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. 538-58-9, We look forward to the emergence of more reaction modes in the future.

Reference£º
Article; Liang, Deqiang; Li, Xiangguang; Zhang, Wanshun; Li, Yanni; Zhang, Mi; Cheng, Ping; Tetrahedron Letters; vol. 57; 9; (2016); p. 1027 – 1030;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Research on new synthetic routes about (S)-Propane-1,2-diol

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 4254-15-3.

The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a downstream synthesis route of the compound 4254-15-3,4254-15-3

(S)-(+)-1,2-propanediol (2.506 g, 32.9 mmol) and 4-methylbenzene-1-sulfonyl chloride (6.91 g, 36.2 mmol) in dichloromethane (DCM) (80 mL) Medium solution,Triethylamine (6.89 mL, 49.4 mmol),Subsequently 4-dimethylaminopyridine (0.201 g, 1.647 mmol) was added.The reaction was stirred at room temperature for 16 hours.The reaction was quenched with saturated aqueous ammonium chloride (20 mL) and the layers were separated.Extract the aqueous portion with DCM (2 ¡Á 20 mL),The combined organic layers were washed with saturated aqueous sodium bicarbonate (20 mL) and brine (20 mL).The organic portion is dried over MgSO4, filtered,Concentrate under reduced pressure to give a residue that isPurification by silica gel chromatography eluting with 10-100% ethyl acetate: heptane gave the product (4.56 g, 60% yield).

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 4254-15-3.

Reference£º
Patent; Abbvie Incorporated; Argiriadi, Maria A.; Breinlinger, Eric C.; Chien, Ellen Yulin Tsai; Cowart, Marlon D.; Frank, Kristine E.; Friedman, Michael M.; Hardy, David J.; Herold, J. Martin; Liu, Huaqing; Chu, Wei; Scanio, Marc J.; Schrimpf, Michael R.; Vargo, Thomas R.; Van Epps, Stacy A.; Webster, Matthew P.; Little, Andrew J.; Dunstan, Teresa A.; Katcher, Matthew H.; Schedler, David A.; (232 pag.)JP6557436; (2019); B1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Extended knowledge of (S)-Butane-1,3-diol

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (S)-Butane-1,3-diol.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps,and cheap raw materials.24621-61-2,A new synthetic method of this compound is introduced below.24621-61-2

Example 4 : (R)-2-(3-{3-[[2-Chloro-3-(trifluoromethyl) benzyl] (2,2- diphenylethyl) amino]-1-methyl-propoxy}-phenyl) acetic acid methyl ester ; a) Toluene-4-sulfonic acid- (S)-3-hydroxy-butyl ester; To a stirring solution of (S)-1, 3-butanediol (1.0 g, 0.01 mmol) and triethylamine (1.39 g, 0.014 mmol) in dichloromethane (10 mL) at-20C was added dropwise p-toluenesulfonyl chloride and the mixture was stirred for 2 h. The reaction mixture was then warmed to RT and stirred overnight. The reaction mixture was poured into cold H2O (20 mL), and extracted three times with dichloromethane. The organic extracts were then washed with brine. The organic layer was dried over sodium sulfate, filtered, and concentrated in vacuo to give 2.6 g (96% yield) of title compound as an oil. MS (ESI) 244.8 (M+). The crude tosylat was used without further purification., 24621-61-2

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, (S)-Butane-1,3-diol.

Reference£º
Patent; SMITHKLINE BEECHAM CORPORATION; WO2003/82802; (2003); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Discovery of (S)-Butane-1,3-diol

According to the analysis of related databases, (S)-Butane-1,3-diol, the application of this compound in the production field has become more and more popular.

In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 24621-61-2,(S)-Butane-1,3-diol, as follows.24621-61-2

Step E (2-TOLUENE-4-SULFONIC acid 3-hydroxy-butyl ester; A solution of (S)- (+)-1, 3-butanediol (9.5 g, 0.105 mol) and Et3N (12.8 g, 0.126 mol) in CH2C12 (200 mL) is treated with dibutyltin oxide (0.52 g, 2.08 mmol) and THENP-TOLUENESULFONYL chloride (20.09 g, 0.105 mol) is added as a solid in portions over 30 minutes at rt. The resultant mixture is stirred at rt for 17 hours under N2. The reaction is quenched with 1 N HC1 (50 mL), diluted with water and extracted with EtOAc. The organic layer is dried (NA2SO4), and the solvent is removed in vacuo to afford crude product that is absorbed on silica gel and purified by flash chromatography using 98/2 CH2C12/ACN (to elute the unreactedp-toluenesulfonyl chloride) and then 2/1 hexanes/acetone to afford 18. 67 g (73%) the title compound. Rf== 0.23, Rf bis-tosylate = 0.53 (98/2 CH2C12/ACN).

According to the analysis of related databases, (S)-Butane-1,3-diol, the application of this compound in the production field has become more and more popular.

Reference£º
Patent; ELI LILLY AND COMPANY; WO2005/19151; (2005); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Extended knowledge of (S)-Propane-1,2-diol

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 4254-15-3.

4254-15-3,Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. (S)-Propane-1,2-diol,4254-15-3, This compound has unique chemical properties. The synthetic route is as follows.

General procedure: A 45percent solution of hydrogen bromide in acetic acid (33.0 g, 23.2 mL) was added dropwise over 10 min to 60.3 mmol optically active diol 4a-f with stirring and ice-cooling. The solution was stirred at 0 ¡ãC for 5 min, and next at room temperature for 45 min. Next, water (100 mL) was added, and the mixture was alkalized to pH 8 with solid Na2CO3. The solution was immediately extracted with ethyl ether (5 .x. 60 mL), and the combined extracts were dried over anhydrous Na2SO4. The ether was evaporated, and the product was distilled under reduced pressure or purified by silica gel column chromatography with gradient AcOEt-hexane 9:1.

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 4254-15-3.

Reference£º
Article; Poterala, Marcin; Plenkiewicz, Jan; Tetrahedron Asymmetry; vol. 22; 3; (2011); p. 294 – 299;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Research on new synthetic routes about 538-58-9

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one.

538-58-9,The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a downstream synthesis route of the compound 538-58-9

General procedure: Method A: A mixture of appropriate derivatives of both 1,3-diaryl-2-propen-1-ones (1.0 equiv.) and aryl hydrazine (1.1 equiv.) was taken in a 100mL round-bottomed flask in 95% ethanol (25mL). Addition of a drop of H2SO4 initiated the precipitation. The reaction mixture was refluxed for 3 to 5h and cooled to room temperature to form precipitate in most of the cases. The residue was filtered, washed with water and dried under vacuum. In some cases where precipitate was not observed after cooling to room temperature, water was added to obtain precipitate.

While traditionally a conservative industry, chemical producers will need to modernize their PR strategies to stay relevant.we look forward to future research findings about 1,5-Diphenylpenta-1,4-dien-3-one.

Reference£º
Article; Ananthnag, Guddekoppa S.; Adhikari, Adithya; Balakrishna, Maravanji S.; Catalysis Communications; vol. 43; (2014); p. 240 – 243;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Extended knowledge of 24621-61-2

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 24621-61-2.

24621-61-2,Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. (S)-Butane-1,3-diol,24621-61-2, This compound has unique chemical properties. The synthetic route is as follows.

Example 7A (2S)-4-((tert-butyl(dimethyl)silyl)oxy)-2-butanol A 0 C. solution of (S)-(+)-1,3-butanediol (2.1 g, 23.3 mmol), imidazole (1.74 g, 25.6 mmol), and N,N-dimethylformamide (1.0 mL) in dichloromethane (40 mL) was treated with tert-butyl-dimethylsilyl chloride (3.68 g, 23.3 mmol). The reaction mixture was warmed to room temperature, stirred overnight, quenched with saturated aqueous ammonium chloride and extracted with dichloromethane. The combined dichloromethane layers were dried (MgSO4), filtered and concentrated to afford of the desired product of sufficient purity for subsequent use without further purification in near quantitative yield. MS (DCI/NH3) m/z 205 (M+H)+; 1H NMR (300 MHz, CDCl3) delta3.95 (m, 1H), 3.79 (m, 2H), 3.27 (br s, 1H), 1.56 (m 2H), 1.11 (d, 3H), 0.82 (s, 9H), 0.016 (s, 6H).

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it, 24621-61-2.

Reference£º
Patent; Bennani, Youssef L.; Black, Lawrence A.; Dwight, Wesley J.; Faghih, Ramin; Gentles, Robert G.; Liu, Huaqing; Phelan, Kathleen M.; Vasudevan, Anil; Zhang, Henry Q.; US2001/49367; (2001); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some scientific research about (S)-Butane-1,3-diol

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand 24621-61-2 reaction routes.

24621-61-2 A common heterocyclic compound, 24621-61-2,(S)-Butane-1,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

e) (S)-4-Triisopropylsilanvloxv-butan-2-olTriethylamine (1.173 g) is added dropwise to a solution of 2.246 g triisopropylchlorosilaneand 1 g (S)-(+)-1,3-butanediol in 15 ml of dry tetrahydrofuran. The mixture is stirred for 48hours at room temperature, then is diluted with 400 ml of tert-butyl methyl ether and washedrespectively with 30 mM N HCI, 50 ml water and 50 ml of brine. The organic phase is dried(sodium sulphate), filtered and evaporated to dryness. The residue is purified by means offlash column chromatography (SiO2 60F) to provide the title compound as a colorless oil.Rf = 0.31 (EtOAc- heptane 1:5).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand 24621-61-2 reaction routes.

Reference£º
Patent; SPEEDEL EXPERIMENTA AG; WO2006/5741; (2006); A2;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Discovery of (S)-Propane-1,2-diol

According to the analysis of related databases, (S)-Propane-1,2-diol, the application of this compound in the production field has become more and more popular.

In the chemical reaction process,reaction time,type of solvent,can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.An updated downstream synthesis route of 4254-15-3,(S)-Propane-1,2-diol, as follows.4254-15-3

The four (4) step reaction sequence starting from 103-1 and 103-2 (prepared as shown from S-(+)-1,2-propanediol (103-0)) provided Boc-T103a in a very good overall yield of 85%. The alternatively protected analogue Ddz-T103a was prepared using the same procedure with an overall yield of 55% [1.4 g Ddz(2RMe)opy18 was obtained starting from 1 g (5.8 mmol) of 103-1]. Synthesis of the Boc-T103b stereoisomer proceeds similarly, but starting from R-(-)-1,2-propanediol.TLC: Rf: 0.3 (100% EtOAc)

According to the analysis of related databases, (S)-Propane-1,2-diol, the application of this compound in the production field has become more and more popular.

Reference£º
Patent; Tranzyme Pharma Inc.; US2008/194672; (2008); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some scientific research about 1,5-Diphenylpenta-1,4-dien-3-one

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand 538-58-9 reaction routes.

538-58-9 A common heterocyclic compound, 538-58-9,1,5-Diphenylpenta-1,4-dien-3-one, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

General procedure: A Schlenk tube with a magnetic stir bar charged with alpha,beta-unsaturated carbonyl compounds (0.5 mmol, 1 equiv), tosyl hydrazide (0.6 mmol, 1.2 equiv), NaOH (1.5 equiv), (n-Bu)4NBr (1.5 equiv). The reaction vessel was placed in an 80 C oil bath, and then stirring at this temperature for 10 h. The reaction mixture was then allowed to cool to ambient temperature, and diluted with 20 mL of ethyl acetate, and washed with brine (15 mL), water (15 mL), and then the organic layer was dried over Na2SO4. After concentrated in vacuo, the crude product was purified by column chromatography. The identity and purity of the known product was confirmed by 1H NMR, 13C NMR, and GC-MS.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand 538-58-9 reaction routes.

Reference£º
Article; Wen, Jun; Fu, Yun; Zhang, Ruo-Yi; Zhang, Ji; Chen, Shan-Yong; Yu, Xiao-Qi; Tetrahedron; vol. 67; 49; (2011); p. 9618 – 9621;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate