Application of Copper(II) trifluoromethanesulfonate

The chemical industry reduces the impact on the environment during synthesis,4254-15-3,(S)-Propane-1,2-diol,I believe this compound will play a more active role in future production and life.

4254-15-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (S)-Propane-1,2-diol, cas is 4254-15-3,the chiral-oxygen-ligands compound, it is a common compound, a new synthetic route is introduced below.

Example 18C N-[(2Z)-3-butyl[1,3]thiazolo[4,5-c]pyridin-2(3H)-ylidene]-2-{[(2S)-2-hydroxypropyl]oxy}-5-(trifluoromethyl)benzamide (S)-propane-1,2-diol (52 mg, 0.68 mmol) in THF (1 mL) was treated with NaH (60percent dispersion; 27 mg, 0.68 mmol) at room temperature for 20 minutes. The mixture was cooled to 0¡ã C. and a solution of Example 18B (90 mg, 0.23 mmol) in THF (1 mL) was added. The mixture was allowed to warm to room temperature, and stirred for 4 hours. The mixture was diluted with saturated aqueous NaHCO3 (20 mL) and extracted with ethyl acetate (2.x.30 mL). The combined organic extracts were dried over anhydrous Na2SO4, filtered, and concentrated. The residue was purified by column chromatography using an Analogix.(R). Intelliflash280.(TM). (SiO2, 0-100percent ethyl acetate in hexanes) to afford 19 mg (19percent) of the title compound. 1H NMR (500 MHz, CDCl3) delta ppm 1.04 (t, J=7.48 Hz, 3H) 1.28 (d, J=6.41 Hz, 3H) 1.47-1.59 (m, 2H) 1.88-1.98 (m, 2H) 3.87 (t, J=8.85 Hz, 1H) 4.21-4.31 (m, 1H) 4.35 (dd, J=9.15, 2.75 Hz, 1H) 4.51-4.59 (m, 2H) 7.12 (d, J=8.85 Hz, 1H) 7.72 (dd, J=8.54, 2.14 Hz, 2H) 8.51 (d, J=1.83 Hz, 2H) 8.75 (s, 1H); MS (DCI/NH3) m/z 454 (M+H)+.

The chemical industry reduces the impact on the environment during synthesis,4254-15-3,(S)-Propane-1,2-diol,I believe this compound will play a more active role in future production and life.

Reference£º
Patent; ABBOTT LABORATORIES; US2011/144165; (2011); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some tips on 24621-61-2

24621-61-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,24621-61-2 ,(S)-Butane-1,3-diol, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to chiral-oxygen-ligands compound, name is (S)-Butane-1,3-diol, and cas is 24621-61-2, its synthesis route is as follows.

Representative example 44: Synthesis of 1-((R)-3-(2-(4-hydroxy-1-((2R,3S)-2- propyl-1-(3-(trifluoromethyl)picolinoyl)-3-(5-(trifluoromethyl)thiophen-3- yloxy)piperidine-3-carbonyl)piperidin-4-yl)phenoxy)butyl)cyclobutanecarboxylic acid A31. Step 1: To a 0C DCM (100 mL) solution of (S)-(+)-1 ,3-Butanol (7g, 77.6 mmol) containing Et^N (14 mL, 1.3equiv) was added drop wise a DCM solution (60 mL) of TsCI (1.05 equiv, 15g). Reaction was warmed-up to Rt and stirred overnight. After 18 hours, the DCM layer was washed with HCI 1.0N (X2), then NaHC03, then brine. Organic layer was dried over MgS04, filtered and concentrated down to 15 g of crude oil. The residue was purified by silica gel chromatography (10% to 40% EtOAc in hexanes) to provide 13 g (69% yield) of (S)-3-hydroxybutyl 4- methylbenzenesulfonate 94.

24621-61-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,24621-61-2 ,(S)-Butane-1,3-diol, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; SCHERING CORPORATION; BOGEN, Stephane, L.; MA, Yao; WANG, Yaolin; LAHUE, Brian Robert; NAIR, Latha, G.; SHIZUKA, Manami; VOSS, Matthew Ernst; KIROVA-SNOVER, Margarita; PAN, Weidong; TIAN, Yuan; KULKARNI, Bheemashankar, A.; GIBEAU, Craig, R.; LIU, Yuan; SCAPIN, Giovanna; RINDGEN, Diane; DOLL, Ronald, J.; GUZI, Timothy, J.; HICKLIN, Danny, J.; NOMEIR, Amin; SEIDEL-DUGAN, Cynthia; SHIPPS, Gerald, W., Jr.; MACCOSS, Malcolm; WO2011/46771; (2011); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Downstream synthetic route of (S)-Butane-1,3-diol

The chemical industry reduces the impact on the environment during synthesis,24621-61-2,(S)-Butane-1,3-diol,I believe this compound will play a more active role in future production and life.

24621-61-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (S)-Butane-1,3-diol, cas is 24621-61-2,the chiral-oxygen-ligands compound, it is a common compound, a new synthetic route is introduced below.

EXAMPLE 38 2-((3S)-3-Hydroxy- 1-butyloxy)-3-(4-methylsulfonyl)phenyl-5-trifluoromethylpyridine To a solution of (S)-1,3-butanediol (807 mg) in DMF (10 mL) at 0 C. was added potassium t-butoxide (7.2 mL of a 1M solution in THF). After 1 h, the mixture was cooled to -20 C. and then 2-chloro-3-(4-methylsulfonyl)phenyl-5-trifluoromethylpyridine (1 g) was added as a solid. The resulting mixture was stirred for 24 h, warming to r.t. To the mixture was added saturated NH4Cl and the mixture was extracted with ethyl acetate. The organics were dried (MgSO4) and concentrated. Flash chromatography (1:1 hexane/ethyl acetate) provided the title compound as a white solid (323 mg). 1 H NMR (300 MHz, acetone-d6): d 1.15 (d, 3H), 1.75-2.00 (m, 2H), 3.15 (s, 3H), 3.65 (d, 1H), 3.85-4.00 (m, 1H), 4.60 (dd, 2H), 7.95 (d, 2H), 8.03 (d, 8.10 (d, 1H), 8.57 (d, 1H).

The chemical industry reduces the impact on the environment during synthesis,24621-61-2,(S)-Butane-1,3-diol,I believe this compound will play a more active role in future production and life.

Reference£º
Patent; Merck Frosst Canada & Co.; US6046217; (2000); A;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The important role of 538-58-9

The chemical industry reduces the impact on the environment during synthesis,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,I believe this compound will play a more active role in future production and life.

538-58-9, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 1,5-Diphenylpenta-1,4-dien-3-one, cas is 538-58-9,the chiral-oxygen-ligands compound, it is a common compound, a new synthetic route is introduced below.

General procedure: 9-Amino(9-deoxy)-epi-quinine (6.5 mg, 0.02 mmol), divinyl ketone 1 (0.1 mmol), nitromethane (262 muL, 3.0 mmol), Proton-sponge (4.3 mg, 0.02 mmol) and benzoic acid (4.9 mg, 0.04 mmol) were dissolved in chlorobenzene (238muL). After stirred at 40 oC for 144 h, the reaction mixture was purified by flash chromatography on silica gel (EtOAc/petroleum ether).

The chemical industry reduces the impact on the environment during synthesis,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,I believe this compound will play a more active role in future production and life.

Reference£º
Article; Yao, Yongqi; Liu, Yingying; Ye, Ling; Chen, Feng; Li, Xinying; Zhao, Zhigang; Li, Xuefeng; Tetrahedron; vol. 73; 16; (2017); p. 2311 – 2315;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

New learning discoveries about 538-58-9

The chemical industry reduces the impact on the environment during synthesis,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,I believe this compound will play a more active role in future production and life.

538-58-9, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 1,5-Diphenylpenta-1,4-dien-3-one, cas is 538-58-9,the chiral-oxygen-ligands compound, it is a common compound, a new synthetic route is introduced below.

Step 1. Under a nitrogen atmosphere, add 8 L of absolute ethanol and 0.112 kg of anhydrous sodium acetate to a glass reactor heated in a water bath.When the system temperature was heated to 68 C, 0.92 kg of dibenzylideneacetone obtained in Example 1 was added.After stirring for 30 minutes, add ice to the water bath heater to quickly cool the system down to 60 C.Then, 0.2 kg of palladium dichloride prepared in Example 1 was added and reacted at 60 C for 2 hours.Funnel filtration gave bis (dibenzylideneacetone) palladium (0);

The chemical industry reduces the impact on the environment during synthesis,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,I believe this compound will play a more active role in future production and life.

Reference£º
Patent; Xi’an Kaili New Materials Co., Ltd.; Zhang Jielan; Chen Dan; Yan Pandun; Xiao Dawei; Li Yuefeng; Wan Kerou; (6 pag.)CN110256503; (2019); A;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Share a compound : 24621-61-2

The chemical industry reduces the impact on the environment during synthesis,24621-61-2,(S)-Butane-1,3-diol,I believe this compound will play a more active role in future production and life.

24621-61-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (S)-Butane-1,3-diol, cas is 24621-61-2,the chiral-oxygen-ligands compound, it is a common compound, a new synthetic route is introduced below.

Example 25 (4-{(R)-3-[(2-CHLORO-3-TRIFLUOROMETHYL-BENZYL)-2, 2-DIPHENYLETHYL-AMINO]-BUTOXY}-INDOL-1- YL) acetic acid hydrochloride salt a) Toluene-4-sulfonic acid (S)-3-hydroxy-butyl ester To a solution of (S)-1, 3-butanediol (2.0 g, 22.0 MMOL) and Et3N (4.6 mL, 33.0 MMOL) in CH2CI2 (20 mL) at-20 C was added p-toluenesulfonyl chloride (4.46 g, 23.0 MMOL) and the reaction mixture was then warmed to RT and stirred overnight. The reaction mixture was washed with H20 and brine, dried over NA2SO4, filtered, and concentrated to give the title compound as a yellow oil (5.2 G, 96%)a) Toluene-4-sulfonic acid (S)-3-hydroxy-butyl ester To a solution of (S)-1, 3-butanediol (2.0 G, 22.0 MMOL) and Et3N (4.6 mL, 33.0 MMOL) in CH2CI2 (20 mL) at-20 C was added p-toluenesulfonyl chloride (4.46 g, 23.0 MMOL) and the reaction mixture was then warmed to RT and stirred overnight. The reaction mixture was washed with H20 and brine, dried over NA2SO4, filtered, and concentrated to give the title compound as a yellow oil (5.2 G, 96%)

The chemical industry reduces the impact on the environment during synthesis,24621-61-2,(S)-Butane-1,3-diol,I believe this compound will play a more active role in future production and life.

Reference£º
Patent; SMITHKLINE BEECHAM CORPORATION; WO2005/23196; (2005); A2;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Application of Cuprouschloride

4254-15-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,4254-15-3 ,(S)-Propane-1,2-diol, other downstream synthetic routes, hurry up and to see

Name is (S)-Propane-1,2-diol, as a common heterocyclic compound, it belongs to chiral-oxygen-ligands compound, and cas is 4254-15-3, its synthesis route is as follows.

Triethylamine was added to methylene chloride solution of (2S)-propane-1,2-diol, and then methylene chloride solution of p-toluenesulfonyl chloride was added thereto at -20C and stirred at room temperature for 18 hours to obtain (2S)-2-hydroxypropyl-4-methylbenzene sulfonate. MS(+): 231

4254-15-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,4254-15-3 ,(S)-Propane-1,2-diol, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Astellas Pharma Inc.; EP1619185; (2006); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Application of 24621-61-2

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (S)-Butane-1,3-diol, 24621-61-2

24621-61-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (S)-Butane-1,3-diol, cas is 24621-61-2,the chiral-oxygen-ligands compound, it is a common compound, a new synthetic route is introduced below.

Example 4 Synthesis of Maytansinoid 4k,l (d) S-1,3-Di-O-p-toluenesulfonyl-butane 22: A solution of S-(-)-1,3-butanediol (21, 2.00 g (22.22 mmol) in a mixture of dry pyridine (40 mL) and dry toluene (60 mL) was treated with p-toluenesulfonyl chloride (12.70 g, 66.84 mmol) under argon at 0 C. After stirring at 0 C. for 5 min. followed by stirring at room temperature for 2 h, the mixture was evaporated under vacuum. The residue was redissolved in ethyl acetate, washed with 0.1 M aqueous NaHCO3, and saturated NaCl. The organic layer was separated, dried over MgSO4, filtered and evaporated. The residue was purified by chromatography over silica gel, eluding with 1:2 ethyl acetate/hexane to give 6.25 g (71%) of the title product 22 Rf=0.40 (1:1 EtOAc/hexane); 1H NMR (CDCl3) 7.76 (dd, 4H, J=1.0, 8.0 Hz), 7.35 (dt, 4H, J=0.4, 8.0+8.0 Hz), 4.70 (m, 1H), 4.03 (m, 1H), 3.94 (m, 1H), 2.46 (s, 6H), 1.92 (m, 2H), 1.26 (d, 3H, J=6.3 Hz); 13C NMR 145.17, 133.00, 130.11, 128.12, 127.91, 76.28, 66.21, 36.08, 21.86, 21.06; MS: 420.99 (M+Na)+.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (S)-Butane-1,3-diol, 24621-61-2

Reference£º
Patent; IMMUNOGEN, INC.; US2004/235840; (2004); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Extracurricular laboratory: Synthetic route of 24621-61-2

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (S)-Butane-1,3-diol, 24621-61-2

24621-61-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (S)-Butane-1,3-diol, cas is 24621-61-2,the chiral-oxygen-ligands compound, it is a common compound, a new synthetic route is introduced below.

To a solution of (S)+}1,3-butanediol (10.0 g, 0.110 mol), was added triphenylmethylchloride (33.0 g, 0.330 mol), 4-dimethylaminopyridine (1.40 g, 11.5 mmol) in CH2Cl/pyridine (1:1, 500 mL).Stirring was continued over 48 h. The solvent was removed, the mixture was diluted with ether, washed with brine and dried over Na2SO4. The organic solution was filtered and concentrated. Silica gel chromatography with (5% ethyl acetate/hexanes) produced a clear oil (24 g) in 70% yield.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (S)-Butane-1,3-diol, 24621-61-2

Reference£º
Patent; Bristol-Myers Squibb Company; Merck & Co. Inc.; US6967196; (2005); B1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some tips on 538-58-9

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 1,5-Diphenylpenta-1,4-dien-3-one, 538-58-9

538-58-9, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 1,5-Diphenylpenta-1,4-dien-3-one, cas is 538-58-9,the chiral-oxygen-ligands compound, it is a common compound, a new synthetic route is introduced below.

General procedure: A flask equipped a magnetic stirring bar was charged with alpha,beta-unsaturatedketone 1 (1.0 mmol), tosylhydrazine(1.1 mmol), K2CO3 (1.5 mmol),and dioxane (2 ml). The reaction mixture was stirredunder a nitrogen atmosphere at 110 Cfor 24 h. The reaction mixture was cooled to room temperature; the reaction mixture was extracted with diethylether (5¡Á3 ml). The combined extracts was washed withbrine and dried over MgSO4, and the crude product was adsorbed ontosilica gel and purified by column chromatography (silica gel, petroleum ether:ethyl acetate 20:1) gave the pure saturated carbonyl compound 4.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 1,5-Diphenylpenta-1,4-dien-3-one, 538-58-9

Reference£º
Article; Zhou, Xiaomeng; Li, Xiaokang; Zhang, Wei; Chen, Junmin; Tetrahedron Letters; vol. 55; 37; (2014); p. 5137 – 5140;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate