A new synthetic route of 1,5-Diphenylpenta-1,4-dien-3-one

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.

A common heterocyclic compound, 538-58-9,1,5-Diphenylpenta-1,4-dien-3-one, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 538-58-9

General procedure: A mixture of malononitrile (2a) (66 mg, 1 mmol), dibenzylideneacetone (6a) (234 mg, 1 mmol), tributylphosphine (25 mL, 0.1 mmol), and anhydrous CH2Cl2 (5.0 mL) was magnetically stirred in a flask under nitrogen atmosphere at room temperature. The reaction progress was monitored by thin layer chromatography (TLC) until the starting materials were completely consumed. Then, the reaction mixture was diluted with H2O (10 mL) and extracted with Et2O (3×10 mL), the organic phase was washed with brine (10 mL), dried over anhydrous Na2SO4. After the removal of the solvent under reduced pressure, the residue was subjected to chromatography on a silica gel (200-300 mesh) column using petroleum ether/ethyl acetate (4:1) as eluent to afford 7a (286 mg, 95% yield) as a light yellow solid (mp 170-171 C).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.

Reference£º
Article; Xu, Da-Zhen; Zhan, Ming-Zhe; Huang, You; Tetrahedron; vol. 70; 2; (2014); p. 176 – 180;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

A new synthetic route of 4254-15-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

A common heterocyclic compound, 4254-15-3,(S)-Propane-1,2-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 4254-15-3

To a solution of (S)-1,2-propanediol (20.0 g, 0.263 mol), triethylamine (31.9 g, 0.315 mol), 4-dimethylaminopyridine (1.28 g, 10.5 mmol) in CH2Cl2 (200 mL) was added tert-butyldimethylsiloxy chloride (47.3 g, 0.315 mol) at 22 C. The mixture was allowed to stir for 18 h. The mixture was diluted with CH2Cl2, washed with water and sat. aqueous NH4Cl. The organic solution was dried over Na2SO4, filtered and concentrated under reduced pressure. Silica gel chromatography (5% ethyl acetate/hexanes) of the concentrate gave 45.0 g of the title compound as a clear oil in 90% yield.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

Reference£º
Patent; Bristol-Myers Squibb Company; Merck & Co. Inc.; US6967196; (2005); B1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The origin of a common compound about (S)-Propane-1,2-diol

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

A common heterocyclic compound, 4254-15-3,(S)-Propane-1,2-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 4254-15-3

To a yellow foamy solid 4 (131.77 g, 295.11 mmol) was added (S)-(+)-1,2-propanediol (296.0 ml) and purified water (866.0 ml).Stir and slowly cool after dissolving.Stirring crystallized, filtered and drained to give a crude product 5;The crude product 5 was directly recrystallized from methyl tert-butyl ether (900 ml) without drying.After filtering to get a fine 5;Without drying, recrystallize twice with methyl tert-butyl ether (900 ml) and filter.The filter cake is washed twice with methyl tert-butyl ether.After drying, it is dried in a drying oven at 45-50C.The second boutique 5 (116.37g, 231.22mmol),HPLC purity 99.94% [HPLC normalization method:Column Agilent SB-C18 (250¡Á4.6mm 5mum);The mobile phase is mobile phase A with acetonitrile-water-trifluoroacetic acid (30:70:0.025).The mobile phase B was acetonitrile-water-trifluoroacetic acid (90:10:0.025).Gradient elution (0?20 min: A 100%?70%, 20?40 min: A 70%?10%, 40?50 min: A 10%, 50?50.1 min:A 100%, 50.1 ? 60min: A 100%,) detection wavelength 220nm;Column temperature 30C; flow rate, 1.0 ml/min], yield 78.35%.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

Reference£º
Patent; Shanghai Modern Pharmaceutical Co., Ltd.; Zhang Guang; Shen Gang; Zou Lingyan; Fu Min; Wu Miaomiao; (13 pag.)CN107488156; (2017); A;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The origin of a common compound about 24621-61-2

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

A common heterocyclic compound, 24621-61-2,(S)-Butane-1,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 24621-61-2

General procedure: (R)-Ethyl 3-hydroxybutyrate (2.1 g, 16 mmol) and (R)-1,3 butanediol(1.0 g, 11 mmol) were combined and incubated with CAL-B (0.2 g,400 U) at 80 torr without solvent in a rotary evaporator. The reaction was monitored by withdrawing 5 muL portions of the reaction mixture,which were dissolved in 1.0 mL methanol for analysis by GC-MS. Upon consumption of the diol, the reaction mixture was taken up in dichloromethane,the beads were filtered and washed, and the solventremoved by rotary evaporation. Excess (R)-ethyl 3-hydroxybutyratewas removed by heating to 60 deg C under reduced pressure (1 torr).The residue was suspended in ethyl acetate, treated with activated carbon and filtered to yield (R)-3-hydroxybutyryl-(R)-3-hydroxybutyrateas a clear oil (1.2 g, 62%).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

Reference£º
Article; Budin, Noah; Higgins, Erin; DiBernardo, Anthony; Raab, Cassidy; Li, Chun; Ulrich, Scott; Bioorganic Chemistry; vol. 80; (2018); p. 560 – 564;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some scientific research about (S)-Butane-1,3-diol

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

24621-61-2 A common heterocyclic compound, 24621-61-2,(S)-Butane-1,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

The flask was charged with (S) -butane-1,3-diol (1.00 g, 11.10 mmol) in dichloromethane (DCM) (27 mL),Triethylamine (1.347 g, 13.32 mmol),4-Dimethylaminopyridine (0.136 g, 1.110 mmol) and 4-methylbenzene-1-sulfonyl chloride (2.327 g, 12.21 mmol) were added. The reaction was stirred at room temperature for 1 hour.Quench the reaction with saturated NH 4 Cl,Extracted with DCM. The organic portion was dried over MgSO 4, filtered and concentrated under reduced pressure to give a residue which was purified by silica gel chromatography eluting with 0-50% ethyl acetate / heptane to give the product (0. 288 g, 1.179 mmol, yield 10.62%).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

Reference£º
Patent; Abbvie Incorporated; Argiriadi, Maria A.; Breinlinger, Eric C.; Chien, Ellen Yulin Tsai; Cowart, Marlon D.; Frank, Kristine E.; Friedman, Michael M.; Hardy, David J.; Herold, J. Martin; Liu, Huaqing; Chu, Wei; Scanio, Marc J.; Schrimpf, Michael R.; Vargo, Thomas R.; Van Epps, Stacy A.; Webster, Matthew P.; Little, Andrew J.; Dunstan, Teresa A.; Katcher, Matthew H.; Schedler, David A.; (232 pag.)JP6557436; (2019); B1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some scientific research about (S)-Propane-1,2-diol

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,(S)-Propane-1,2-diol,4254-15-3,its application will become more common.

4254-15-3 A common heterocyclic compound, 4254-15-3,(S)-Propane-1,2-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

Zu einer Loesung von 1.50 g (19.7 mmol) S-1, 2-Propandiol in 15 ml Dichlormethan werden 2.75 ml (19.7 mmol) Triethylamin, 0. 10 g (0. 8 MMOL) 4-N, N-Dimethylaminopyridin und 2. 97 G (19.7 mmol) tert. -Butyldimethylsilylchlorid gegeben. Die Reaktionsmischung wird fuer 16 h bei Raumtemperatur geruehrt. Anschliessend wird mit Dichlormethan verduennt und je zweimal mit Wasser, gesaettigter Ammoniumchlorid-Loesung und gesaettigter Natriumhydrogencarbonat-Loesung gewaschen. Die organische Phase wird ueber Natriumsulfat getrocknet und im Vakuum vom Loesungsmittel befreit. Der Rueckstand wird ohne weitere Reinigung in der naechsten Stufe eingesetzt. Ausbeute : 2.55 g, 80% Reinheit (54% d. Th.) GC/MS (Methode 6) : RT = 2.62 min., M/Z = 191 (M+H)+., 4254-15-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,(S)-Propane-1,2-diol,4254-15-3,its application will become more common.

Reference£º
Patent; BAYER HEALTHCARE AG; WO2004/80952; (2004); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The origin of a common compound about 538-58-9

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.

A common heterocyclic compound, 538-58-9,1,5-Diphenylpenta-1,4-dien-3-one, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 538-58-9

538-58-9, Step 1. Under a nitrogen atmosphere, add 8 L of absolute ethanol and 0.112 kg of anhydrous sodium acetate to a glass reactor heated in a water bath.When the system temperature was heated to 68 C, 0.92 kg of dibenzylideneacetone obtained in Example 1 was added.After stirring for 30 minutes, add ice to the water bath heater to quickly cool the system down to 60 C.Then, 0.2 kg of palladium dichloride prepared in Example 1 was added and reacted at 60 C for 2 hours.Funnel filtration gave bis (dibenzylideneacetone) palladium (0);

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.

Reference£º
Patent; Xi’an Kaili New Materials Co., Ltd.; Zhang Jielan; Chen Dan; Yan Pandun; Xiao Dawei; Li Yuefeng; Wan Kerou; (6 pag.)CN110256503; (2019); A;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

A new synthetic route of (S)-Propane-1,2-diol

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

A common heterocyclic compound, 4254-15-3,(S)-Propane-1,2-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 4254-15-3

Compound M31:; To a solution of (S)-1 ,2-propandiol (5 mmol) in 5 ml_ of anhydrous CH2CI2 were added 2-methyl-1-butene (5.5 mmol) and BF3 etherate (0.5 mmol) at room temperature. The stirring was continued for another 24 h. The solvent was removed by vacuum, and the residue was purified by chromatograph on silica gel to afford intermediate (4 mmol, 80 percent yield) as oil. Then, to a suspension of this intermediate and imidazole (6 mmol) in 6 ml_ of anhydrous THF was added 4.8 mL of TBDMSCI (1 M in THF) at 0 0C. The solvent was removed by vacuum, and the residue was re-dissolved in Et2O. The heterogeneous mixture was filtered over a pad of Celite. The filtrate was washed with 1N HCI, water and brine, dried over Na2SO4 and concentrated in vacuo. The residue was chromatographed to give pure M31 (0.34 mmol, 85percent yield) as oil.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

Reference£º
Patent; UNIVERSITY OF CONNECTICUT; WO2006/44381; (2006); A2;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some scientific research about (S)-Butane-1,3-diol

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

24621-61-2 A common heterocyclic compound, 24621-61-2,(S)-Butane-1,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

p-Toluenesulfonyl chloride (381 mg, 1 .68 mmol) was dissolved in anhydrous DCM (10 mL) at RT under N2. (s)-(+)-1 ,3-butandiol (300 muIota_, 3.33 mmol) was added followed by NEt3 (450 muIota_, 3.33 mmol) and the solution stirred for 18 h. The solution was partitioned with H2O (15 mL) and extracted with DCM (3 x 10 mL), Combined organic fractions were dried by phase separator and the mixture loaded onto silica for purification by flash chromatography. The desired compound A32 was isolated as a clear oil (144 mg, 29%); -NMR (400 MHz, DMSO-c/6): delta 7.78 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H), 4.56 (d, J = 5.0 Hz, 1 H), 4.12-4.00 (m, 2H), 3.65-3.57 (m, 1 H). 2.43 (s, 3H), 1 .69-1 .54 (m, 2H), 1 .00 (d, J = 6.0 Hz, 3H).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

Reference£º
Patent; IMPERIAL INNOVATIONS LIMITED; SCHNEIDER, Michael; NEWTON, Gary; CHAPMAN, Katie; PERRIOR, Trevor; JARVIS, Ashley; LOW, Caroline; AQIL, Rehan; FISHER, Martin; BAYFORD, Melanie; CHAPMAN, Nicholas; MARTIN, Nicholas; REISINGER, Tifelle; NEGOITA-GIRAS, Gabriel; (260 pag.)WO2019/73253; (2019); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

A new synthetic route of (S)-Propane-1,2-diol

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

A common heterocyclic compound, 4254-15-3,(S)-Propane-1,2-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 4254-15-3

To a stirred solution of (A)-propane-l,2-diol (5 g, 65.7 mmol) in anhydrous DCM (40 mL) at 0 C, was added imidazole (4.47 g, 65.7 mmol), followed by TBDMS-C1 (10.89 g, 72.3 mmol). After being stirred at room temperature for 4 h, the reaction mixture was cooled to 0C, and partitioned between sodium bicarbonate solution (50 ml) and DCM (200 mL). The organic layer was washed with EhO, and saturated NaCl solution, dried over anhydrous Na2S04, filtered and concentrated under reduced pressure fV)- l -((/tW-butyl dimethyl si lyl)oxy)propan-2-ol ^2 g, 63.0 mmol, 96% ) as colourless oil. NMR (400 MHz, chloroform-^ d ppm 3.73 – 3.88 (m, 1H), 3.51 – 3.65 (m, 1H), 3.29 – 3.46 (m, 1H), 2.36 – 2.56 (m, 1H), 1.12 (d, J=6.53 Hz, 3H), 0.90 – 0.96 (m, 9H), 0.06 – 0.13 (m, 6H)., 4254-15-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

Reference£º
Patent; BRISTOL-MYERS SQUIBB COMPANY; BALOG, James Aaron; SEITZ, Steven P.; WILLIAMS, David K.; ANDAPPAN MURUGAIAH SUBBAIAH, Murugaiah; (191 pag.)WO2019/136112; (2019); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate