The origin of a common compound about 24621-61-2

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

A common heterocyclic compound, 24621-61-2,(S)-Butane-1,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 24621-61-2

EXAMPLE 38 2-((3S)-3-Hydroxy- 1-butyloxy)-3-(4-methylsulfonyl)phenyl-5-trifluoromethylpyridine To a solution of (S)-1,3-butanediol (807 mg) in DMF (10 mL) at 0 C. was added potassium t-butoxide (7.2 mL of a 1M solution in THF). After 1 h, the mixture was cooled to -20 C. and then 2-chloro-3-(4-methylsulfonyl)phenyl-5-trifluoromethylpyridine (1 g) was added as a solid. The resulting mixture was stirred for 24 h, warming to r.t. To the mixture was added saturated NH4Cl and the mixture was extracted with ethyl acetate. The organics were dried (MgSO4) and concentrated. Flash chromatography (1:1 hexane/ethyl acetate) provided the title compound as a white solid (323 mg). 1 H NMR (300 MHz, acetone-d6): d 1.15 (d, 3H), 1.75-2.00 (m, 2H), 3.15 (s, 3H), 3.65 (d, 1H), 3.85-4.00 (m, 1H), 4.60 (dd, 2H), 7.95 (d, 2H), 8.03 (d, 8.10 (d, 1H), 8.57 (d, 1H).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

Reference£º
Patent; Merck Frosst Canada & Co.; US6046217; (2000); A;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The origin of a common compound about 4254-15-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

A common heterocyclic compound, 4254-15-3,(S)-Propane-1,2-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 4254-15-3

To a stirred solution of (A)-propane-l,2-diol (5 g, 65.7 mmol) in anhydrous DCM (40 mL) at 0 C, was added imidazole (4.47 g, 65.7 mmol), followed by TBDMS-C1 (10.89 g, 72.3 mmol). After being stirred at room temperature for 4 h, the reaction mixture was cooled to 0C, and partitioned between sodium bicarbonate solution (50 ml) and DCM (200 mL). The organic layer was washed with EhO, and saturated NaCl solution, dried over anhydrous Na2S04, filtered and concentrated under reduced pressure fV)- l -((/tW-butyl dimethyl si lyl)oxy)propan-2-ol ^2 g, 63.0 mmol, 96% ) as colourless oil. NMR (400 MHz, chloroform-^ d ppm 3.73 – 3.88 (m, 1H), 3.51 – 3.65 (m, 1H), 3.29 – 3.46 (m, 1H), 2.36 – 2.56 (m, 1H), 1.12 (d, J=6.53 Hz, 3H), 0.90 – 0.96 (m, 9H), 0.06 – 0.13 (m, 6H).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

Reference£º
Patent; BRISTOL-MYERS SQUIBB COMPANY; BALOG, James Aaron; SEITZ, Steven P.; WILLIAMS, David K.; ANDAPPAN MURUGAIAH SUBBAIAH, Murugaiah; (191 pag.)WO2019/136112; (2019); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

A new synthetic route of 1,5-Diphenylpenta-1,4-dien-3-one

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.

A common heterocyclic compound, 538-58-9,1,5-Diphenylpenta-1,4-dien-3-one, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 538-58-9

General procedure: To a solution of dialkyl phosphite (0.01 mol) in anhydrous tetrahydrofuran (30 mL),maintained under a nitrogen atmosphere, sodium (0.02 g) was added and the mixture was stirred at roomtemperature until complete dissolution of sodium. Diarylideneketone 1 (0.01 mol) was then added and themixture heated under reflux for 4 h. After cooling, the reaction mixture was diluted with water (50 mL)and extracted with CHCl3 (2 ¡Á 25 mL). The organic phase was dried over Na2SO4 and concentrated undervacuum. The obtained residue was chromatographed on a silica gel column using a mixture of Et2O andhexane 9:1 as an eluent.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.

Reference£º
Article; Lamouchi, Imen; Touil, Soufiane; Heterocycles; vol. 94; 5; (2017); p. 894 – 911;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

A new synthetic route of (S)-Butane-1,3-diol

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

A common heterocyclic compound, 24621-61-2,(S)-Butane-1,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 24621-61-2

To a solution of (S)-1,3-butanediol (807 mg) in DMF (10 mL) at 0C was added potassium t-butoxide (7.2 mL of a 1M solution in THF). After 1 h, the mixture was cooled to -20C and then 2-chloro-3-(4-methylsulfonyl)phenyl-5-trifluoromethylpyridine (1 g) was added as a solid. The resulting mixture was stirred for 24 h, warming to r.t. To the mixture was added saturated NH4Cl and the mixture was extracted with ethyl acetate. The organics were dried (MgSO4) and concentrated. Flash chromatography (1:1 hexane/ethyl acetate) provided the title compound as a white solid (323 mg).1H NMR (300 MHz, acetone-d6): d 1.15 (d, 3H), 1.75-2.00 (m, 2H), 3.15 (s, 3H), 3.65 (d, 1H), 3.85-4.00 (m, 1H), 4.60 (dd, 2H), 7.95 (d, 2H), 8.03 (d, 2H), 8.10 (d, 1H), 8.57 (d, 1H).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

Reference£º
Patent; MERCK FROSST CANADA & CO.; EP1012142; (2004); B1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

A new synthetic route of 1,5-Diphenylpenta-1,4-dien-3-one

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.

A common heterocyclic compound, 538-58-9,1,5-Diphenylpenta-1,4-dien-3-one, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 538-58-9

General procedure: A Schlenk tube with a magnetic stir bar charged with alpha,beta-unsaturated carbonyl compounds (0.5 mmol, 1 equiv), tosyl hydrazide (0.6 mmol, 1.2 equiv), NaOH (1.5 equiv), (n-Bu)4NBr (1.5 equiv). The reaction vessel was placed in an 80 C oil bath, and then stirring at this temperature for 10 h. The reaction mixture was then allowed to cool to ambient temperature, and diluted with 20 mL of ethyl acetate, and washed with brine (15 mL), water (15 mL), and then the organic layer was dried over Na2SO4. After concentrated in vacuo, the crude product was purified by column chromatography. The identity and purity of the known product was confirmed by 1H NMR, 13C NMR, and GC-MS.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.

Reference£º
Article; Wen, Jun; Fu, Yun; Zhang, Ruo-Yi; Zhang, Ji; Chen, Shan-Yong; Yu, Xiao-Qi; Tetrahedron; vol. 67; 49; (2011); p. 9618 – 9621;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

A new synthetic route of (S)-Butane-1,3-diol

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

A common heterocyclic compound, 24621-61-2,(S)-Butane-1,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 24621-61-2

p-Toluenesulfonyl chloride (381 mg, 1 .68 mmol) was dissolved in anhydrous DCM (10 mL) at RT under N2. (s)-(+)-1 ,3-butandiol (300 muIota_, 3.33 mmol) was added followed by NEt3 (450 muIota_, 3.33 mmol) and the solution stirred for 18 h. The solution was partitioned with H2O (15 mL) and extracted with DCM (3 x 10 mL), Combined organic fractions were dried by phase separator and the mixture loaded onto silica for purification by flash chromatography. The desired compound A32 was isolated as a clear oil (144 mg, 29%); -NMR (400 MHz, DMSO-c/6): delta 7.78 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H), 4.56 (d, J = 5.0 Hz, 1 H), 4.12-4.00 (m, 2H), 3.65-3.57 (m, 1 H). 2.43 (s, 3H), 1 .69-1 .54 (m, 2H), 1 .00 (d, J = 6.0 Hz, 3H).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

Reference£º
Patent; IMPERIAL INNOVATIONS LIMITED; SCHNEIDER, Michael; NEWTON, Gary; CHAPMAN, Katie; PERRIOR, Trevor; JARVIS, Ashley; LOW, Caroline; AQIL, Rehan; FISHER, Martin; BAYFORD, Melanie; CHAPMAN, Nicholas; MARTIN, Nicholas; REISINGER, Tifelle; NEGOITA-GIRAS, Gabriel; (260 pag.)WO2019/73253; (2019); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some scientific research about 538-58-9

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1,5-Diphenylpenta-1,4-dien-3-one,538-58-9,its application will become more common.

A common heterocyclic compound, 538-58-9,1,5-Diphenylpenta-1,4-dien-3-one, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 538-58-9

538-58-9, General procedure: To a 10 mL Schlenk tube equipped with a stir bar was charged with ketone (1 mmol), KOH (0.05 mmol), and iPrOH (3 mL). The mixture was degassed by bubbling N2, and 0.1 mol % of catalyst 2 for entry 1-10 and 0.5 mol% of 2 for entry 11-19, was added under a steady flow of N2. After removal any inorganic salts by filtration, all the volatiles were removed under reduced pressure. The pure product could be obtained by silica gel chromatography (ethyl acetate/hexane). The identity of these products have been confirmed by comparisons of the obtained spectra with those previously reported.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1,5-Diphenylpenta-1,4-dien-3-one,538-58-9,its application will become more common.

Reference£º
Article; Gong, Xue; Zhang, Hong; Li, Xingwei; Tetrahedron Letters; vol. 52; 43; (2011); p. 5596 – 5600;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The origin of a common compound about 24621-61-2

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

A common heterocyclic compound, 24621-61-2,(S)-Butane-1,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 24621-61-2

EXAMPLE INEL SynthesisPreparation of (3S)-1-p-Toluenesulfonyloxy-3-triethylsilyloxy-butane (2); To a stirred solution of the (S)-(+)-1,3-butanediol 1 (1 g, 11.1 mmol), DMAP (30 mg, 0.25 mmol) and Et3N (4.6 mL, 3.33 g, 33 mmol) in anhydrous methylene chloride (20 mL)p-toluenesulfonyl chloride (2.54 g, 13.3 mmol) was added at 0 C. The reaction mixture was stirred at 4 C. for 22 h. Methylene chloride was added and the mixture was washed with water, dried (Na2SO4) and concentrated under reduced pressure. A residue was chromatographed on silica gel with hexane/ethyl acetate (8:2, then 1:1) to afford the tosylate (2.31 g, 85% yield) as colorless oil.To a stirred solution of the tosylate (2.31 g, 9.5 mmol) and 2,6-lutidine (1.2 mL, 1.12 g, 10.5 mmol) in anhydrous methylene chloride (15 mL) triethylsilyl trifluoromethanesulfonate (2.1 mL, 2.51 g, 9.5 mmol) was added at -50 C. The reaction mixture was allowed to warm to room temperature (4 h) and stirring was continued for additional 20 h. Methylene chloride was added and the mixture was washed with water, dried (Na2SO4) and concentrated under reduced pressure. A residue was chromatographed on silica gel with hexane/ethyl acetate (97:3) to afford the product 2 (2.71 g, 80% yield) as a colorless oil:[alpha]D+18.0 (c 2.38, CHCl3); 1H NMR (400 MHz, CDCl3) delta7.77 (2H, d, J=8.2 Hz, o-HTs), 7.33 (2H, d, J=8.2 Hz, m-HTs), 4.10 (2H, t, J=6.1 Hz, 1-H2), 3.90 (1H, m, 3-H), 2.43 (3H, s, McTs), 1.72 (2H, m, 2-H2), 1.10 (3H, d, J=6.2 Hz, 4-H3), 0.88 (9H, t, J=8.0 Hz, 3¡ÁSiCH2CH3), 0.50 (6H, q, J=8.0 Hz, 3¡ÁSiCH2CH3); 13C NMR (100 MHz) delta 144.62 (s, p-CTs), 133.03 (s, i-CTs), 129.72 (d, m-CTs), 127.82 (d, o-CTs), 67.78 (t, C-1), 64.46 (d, C-3), 38.47 (t, C-2), 23.82 (q, C-4), 21.52 (q, MeTs), 6.71 (q, SiCH2CH3), 4.77 (t, SiCH2CH3); MS (EI) m/z 359 (5, MH+), 329 (87, M+ -C2H5), 259 (100), 233 (54), 197 (50), 179 (74), 163 (40), 149 (48), 135 (38), 115 (53), 91 (71); exact mass calculated for C15H25O4SSi (M+ -C2H5) 329.1243, found 329.1239.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

Reference£º
Patent; WISCONSIN ALUMNI RESEARCH FOUNDATION; US2007/191316; (2007); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some scientific research about 1,5-Diphenylpenta-1,4-dien-3-one

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1,5-Diphenylpenta-1,4-dien-3-one,538-58-9,its application will become more common.

538-58-9 A common heterocyclic compound, 538-58-9,1,5-Diphenylpenta-1,4-dien-3-one, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

General procedure: In a general procedure, dibenzylidene acetone (1 mmol), N,N-dimethylbarbituric acid/barbituric acid/thiobarbituric acid(1 mmol) and 4 mL of ethanol:water (1:1) were taken in a 50 mL round-bottomed flask. 10 mol% of tetrabutyl ammonium bromide (TBAB) was added to the mixture, and the contents were stirred. The reaction mixture was refluxed and the progress of the reaction was monitored by TLC using ethyl acetate:petroleum ether (30:70) as eluent for disappearance of active methylene compounds. After completion of the reaction, the reaction mixture was allowed to cool to room temperature and diluted with water (5 mL). The solid obtained was filtered at pump and washed with water:ethanol (2:1). The product was recrystallized with ethanol. The products were characterized by their spectral data.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,1,5-Diphenylpenta-1,4-dien-3-one,538-58-9,its application will become more common.

Reference£º
Article; Aggarwal, Komal; Khurana, Jitender M.; Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; vol. 143; (2015); p. 288 – 297;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The origin of a common compound about (S)-Butane-1,3-diol

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

A common heterocyclic compound, 24621-61-2,(S)-Butane-1,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 24621-61-2

(Example 5-1) Under ice cooling, to a dichloromethane solution (20.0 ml) of (S)-1,3-butanediol (519 mg) were added triethylamine (1.04 ml) and tert-butylchlorodiphenylsilane (1.63 ml), followed by stirring at room temperature overnight. The reaction solution was poured into a saturated aqueous ammonium chloride solution, and extracted with ethyl acetate. The organic layer was washed with saturated sodium chloride solution, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The resulting residue was purified by silica gel chromatography to afford (2S)-4-{[tert-butyl(diphenyl)silyl]oxy}butan-2-ol (1.69 g). 1H NMR(400 MHz,CDCl3) delta: 1.05 (9H, s), 1.22 (3H, d, J = 6.3 Hz), 1.58-1.68 (1H, m), 1.69-1.81 (1H, m), 3.31 (1H, d, J = 2.0 Hz), 3.80-3.91 (2H, m), 4.07-4.15 (1H, m), 7.37-7.50 (6H, m), 7.69 (4H, d, J = 6.2 Hz).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

Reference£º
Patent; Daiichi Sankyo Company, Limited; EP2471792; (2012); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate