A common heterocyclic compound, 538-58-9,1,5-Diphenylpenta-1,4-dien-3-one, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 538-58-9
General procedure: To a 10 mL Schlenk tube equipped with a stir bar was charged with ketone (1 mmol), KOH (0.05 mmol), and iPrOH (3 mL). The mixture was degassed by bubbling N2, and 0.1 mol % of catalyst 2 for entry 1-10 and 0.5 mol% of 2 for entry 11-19, was added under a steady flow of N2. After removal any inorganic salts by filtration, all the volatiles were removed under reduced pressure. The pure product could be obtained by silica gel chromatography (ethyl acetate/hexane). The identity of these products have been confirmed by comparisons of the obtained spectra with those previously reported.
This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.
Reference£º
Article; Gong, Xue; Zhang, Hong; Li, Xingwei; Tetrahedron Letters; vol. 52; 43; (2011); p. 5596 – 5600;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate