A new synthetic route of 538-58-9

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.

A common heterocyclic compound, 538-58-9,1,5-Diphenylpenta-1,4-dien-3-one, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 538-58-9

General procedure: To a 10 mL Schlenk tube equipped with a stir bar was charged with ketone (1 mmol), KOH (0.05 mmol), and iPrOH (3 mL). The mixture was degassed by bubbling N2, and 0.1 mol % of catalyst 2 for entry 1-10 and 0.5 mol% of 2 for entry 11-19, was added under a steady flow of N2. After removal any inorganic salts by filtration, all the volatiles were removed under reduced pressure. The pure product could be obtained by silica gel chromatography (ethyl acetate/hexane). The identity of these products have been confirmed by comparisons of the obtained spectra with those previously reported.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,538-58-9,1,5-Diphenylpenta-1,4-dien-3-one,its application will become more common.

Reference£º
Article; Gong, Xue; Zhang, Hong; Li, Xingwei; Tetrahedron Letters; vol. 52; 43; (2011); p. 5596 – 5600;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The origin of a common compound about 24621-61-2

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

A common heterocyclic compound, 24621-61-2,(S)-Butane-1,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 24621-61-2

Preparation of (3S)-1-p-Toluenesulfonyloxy-3-triethylsilyloxy-butane (2b); To a stirred, solution of the(S)-(+)-1,3-butanediol 1b (1 g, 11.1 mmol), DMAP (30 mg, 0.25 mmol) and Et3N (4.6 mL, 3.33 g, 33 mmol) in anhydrous methylene chloride (20 mL) p-toluenesulfonyl chloride (2.54 g, 13.3 mmol) was added at 0 C. The reaction mixture was stirred at 4 C. for 22 h. Methylene chloride was added and the mixture was washed with water, dried (Na2SO4) and concentrated under reduced pressure. A residue was chromatographed on silica gel with hexane/ethyl acetate (8:2, then 1:1) to afford the tosylate (2.31 g, 85% yield) as a colorless oil., 24621-61-2

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,24621-61-2,(S)-Butane-1,3-diol,its application will become more common.

Reference£º
Patent; WISCONSIN ALUMNI RESEARCH FOUNDATION; US2012/283228; (2012); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The origin of a common compound about 4254-15-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

A common heterocyclic compound, 4254-15-3,(S)-Propane-1,2-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 4254-15-3

To a stirred solution of 68 (S)-2-propanediol (1.00g, 13.14mmol) in 14 dichloromethane/69 pyridine (10:10 V/V) at -25C under argon was added dropwise 70 p-toluenesulfonyl chloride (2.51g, 13.14mmol) dissolved in 10mL of CH2Cl2 over a period of 2h. The mixture was stirred at -25C for 4h and then at room temperature for further 2h. After the reaction was completed, 30mL of CH2Cl2 were added and the mixture was shaken successively with ice-cold water, 1M 10mL 71 aqueous HCl, 15mL 72 water, saturated NaHCO3, and water, respectively. The organic phase was dried over MgSO4 and filtered and the solvent was removed under reduced pressure. The residue was purified by chromatography over silica gel using toluene/EtOAc (5/1) to give 73 product (1.70g, 56%) as white crystals. M.p: 33-35C, [alpha]D25=-12.05 (c 1, CHCl3). 1H NMR (CDCI3, ppm): delta 7.80 (d, 2H, J=8.0Hz, of OTs), 7.36 (d, 2H, J=8.0Hz, of OTs), 3.97-4.05 (m, 2H, -CHCH3-+CH2OTs (a)), 3.83-3.88 (m, 1H, CH2OTs (b)), 2.45 (s, 3H, -CH3 of OTs), 2.39 (s, 1H, OH), 1.15 (d, J=6.4Hz, 3H, -CHCH3), assignment was based on the 1H-13C HETCOR and 1H-1H COSY spectra, 4254-15-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

Reference£º
Article; Meric, Nermin; Kayan, Cezmi; Guerbuez, Nevin; Karakaplan, Mehmet; Binbay, Nil Ertekin; Aydemir, Murat; Tetrahedron Asymmetry; vol. 28; 12; (2017); p. 1739 – 1749;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some scientific research about (S)-Propane-1,2-diol

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

4254-15-3 A common heterocyclic compound, 4254-15-3,(S)-Propane-1,2-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.

The four (4) step reaction sequence starting from 103-1 and 103-2 (prepared as shown from S-(+)-1,2-propanediol (103-0)) provided Boc-T103a in a very good overall yield of 85%. The alternatively protected analogue Ddz-T103a was prepared using the same procedure with an overall yield of 55% [1.4 g Ddz(2RMe)opy18 was obtained starting from 1 g (5.8 mmol) of 103-1]. Synthesis of the Boc-T103b stereoisomer proceeds similarly, but starting from R-(-)-1,2-propanediol.TLC: Rf: 0.3 (100% EtOAc)

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

Reference£º
Patent; Tranzyme Pharma Inc.; US2008/194672; (2008); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The origin of a common compound about 4254-15-3

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

A common heterocyclic compound, 4254-15-3,(S)-Propane-1,2-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 4254-15-3

Step 1 To (S)-propane diol (4.89 g, 64.2 mmol) in DCM (20 ml_) at-20 C (CO2/ ethylene glycol bath) was added TEA (11.2 mL, 80.3 mmol) followed by p-toluenesulfonyl chloride (12.3 g, 64.3 mmol) in DCM (26 mL) dropwise over 30 minutes. Allowed the cold bath to expire while stirring for 26 h. Added DCM and washed the reaction with 1 N HCI, water, and brine. Dried (MgSO4) the organic layer, filtered, and concentrated in vacuo. The residue was purified by silica gel chromatography (0-40% EtOAc/Hex over 40 minutes) to provide the tosylate (8.37 g, 36 .4 mmol).

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,4254-15-3,(S)-Propane-1,2-diol,its application will become more common.

Reference£º
Patent; SCHERING CORPORATION; WO2009/5646; (2009); A2;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The origin of a common compound about 19132-06-0

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,19132-06-0,(2S,3S)-Butane-2,3-diol,its application will become more common.

A common heterocyclic compound, 19132-06-0,(2S,3S)-Butane-2,3-diol, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route. 19132-06-0

To a 500-mL, 3-necked round-bottomed flask (equipped with a water- cooled reflux condenser and an HCI trap) was added (2s,3s)-(-f-)-2.3-butanediol (Aldrich, Milwaukee Wisconsin)(1500 nil, 166 mniol) and CCI4 (120 ml). Thionyl chloride. reagentplus (14.57 ml, 200 mmoi) was then added drop wise viaa syringe over a period of 20 minutes and the resulting mixture was heated to98 C for 45 minutes, then it was allowed to cool to room temperature. Rf ofintermediate == 0.42 eluting with 50% EtOAc in heptanes; use KMNO4 to visualizecompound, The reaction mixture was then cooled in an ice-water bath. MeCN(120 mL) and water (150 rnL) were added followed by ruthenium(111) chloride(0.035g. 0.166 nunol). Sodium periodate (53.4 g, 250 rnmol) was then addedslowly portion wise over 30 minutes. The resulting biphasic brown mixture was stirred vigorously whie allowed to reach room temperature for a period of 1.5 hour (internal temperature never increased above room temperature). TLC (50% EtOAc in heptanes) showed complete conversion. The crude mixture was thenpoured into ice water and extracted twice with 300 ml of diethyl ether. The combined organic layers were washed once with 200 ml of saturated sodium bicarbonate, washed once with 200 nil of brine, dried over sodium sulfate and concentrated by rotary evaporation to give (4S.5 S)-4,5-dimethyi- 1,3,2- dioxathiolane 2,2-dioxide (21.2 g, 139 mmoi) as a red oil.

This compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,19132-06-0,(2S,3S)-Butane-2,3-diol,its application will become more common.

Reference£º
Patent; AMGEN INC.; BROWN, Sean P.; BEDKE, David Karl; DEGRAFFENREID, Michael R.; FU, Jiasheng; LI, Zhihong; GONZALEZ LOPEZ DE TURISO, Felix; GONZALEZ BUENROSTRO, Ana; GRIBBLE, Jr., Michael W.; JOHNSON, Michael G.; KOHN, Todd J.; LI, Kexue; LI, Yunxiao; LIZARZABURU, Mike Elias; REW, Yosup; TAYGERLY, Joshua; WANG, Yingcai; YAN, Xuelei; YU, Ming; ZHU, Jiang; ZANCANELLA, Manuel; JIAO, Xian Yun; ZHU, Liusheng; WANG, Xianghong; MEDINA, Julio C.; DUQUETTE, Jason A.; HOUZE, Jonathan B.; VIMOLRATANA, Marc; CARDOZO, Mario G.; CHENG, Alan C.; (2426 pag.)WO2017/147410; (2017); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Downstream synthetic route of (S)-Butane-1,3-diol

With the complex challenges of chemical substances, we look forward to future research findings about (S)-Butane-1,3-diol,belong chiral-oxygen-ligands compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO242,mainly used in chemical industry, its synthesis route is as follows.,24621-61-2

(Example 5-1) Under ice cooling, to a dichloromethane solution (20.0 ml) of (S)-1,3-butanediol (519 mg) were added triethylamine (1.04 ml) and tert-butylchlorodiphenylsilane (1.63 ml), followed by stirring at room temperature overnight. The reaction solution was poured into a saturated aqueous ammonium chloride solution, and extracted with ethyl acetate. The organic layer was washed with saturated sodium chloride solution, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The resulting residue was purified by silica gel chromatography to afford (2S)-4-{[tert-butyl(diphenyl)silyl]oxy}butan-2-ol (1.69 g). 1H NMR(400 MHz,CDCl3) delta: 1.05 (9H, s), 1.22 (3H, d, J = 6.3 Hz), 1.58-1.68 (1H, m), 1.69-1.81 (1H, m), 3.31 (1H, d, J = 2.0 Hz), 3.80-3.91 (2H, m), 4.07-4.15 (1H, m), 7.37-7.50 (6H, m), 7.69 (4H, d, J = 6.2 Hz).

With the complex challenges of chemical substances, we look forward to future research findings about (S)-Butane-1,3-diol,belong chiral-oxygen-ligands compound

Reference£º
Patent; Daiichi Sankyo Company, Limited; EP2471792; (2012); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The important role of 24621-61-2

With the complex challenges of chemical substances, we look forward to future research findings about (S)-Butane-1,3-diol

Name is (S)-Butane-1,3-diol, as a common heterocyclic compound, it belongs to chiral-oxygen-ligands compound, and cas is 24621-61-2, its synthesis route is as follows.,24621-61-2

Example 63 (R)-3- {2-CHLORO-4- [3- (4-CHLORO-2-PHENOXY-PHENOXY)-BUTOXY]-PHENYL}-PROPIONIC acid Step A (S) -Acetic acid 3-hydroxy-butyl ester; A mixture of (S)- (+)-1, 3-butanediol (10.0 g, 0.1 mol) and 2,4, 6-collidine (27 g, 0.2 mol) in DCM (100 mL) is cooled to-78 C. The reaction is then treated dropwise with acetyl chloride (10.4 g, 0.13 mol), and stirred for 2hr AT-78 C. The reaction is then allowed to warm to rt and stir for an additional hour. The reaction is then quenched with IN HCl and extracted with DCM. The organic layer is separated, washed with brine, and dried over NA2SO4. The organic is filtered, and the solvent is removed to afford 9.77 g (66%) of acetic acid 3-hydroxy-butyl ESTER. IH NMR (400 MHz, CDC13) ; MS (ES+) NILZ mass calcd for C6HI203 132, found 133 (M + 1).

With the complex challenges of chemical substances, we look forward to future research findings about (S)-Butane-1,3-diol

Reference£º
Patent; ELI LILLY AND COMPANY; WO2005/19151; (2005); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The important role of 24621-61-2

With the complex challenges of chemical substances, we look forward to future research findings about (S)-Butane-1,3-diol

Name is (S)-Butane-1,3-diol, as a common heterocyclic compound, it belongs to chiral-oxygen-ligands compound, and cas is 24621-61-2, its synthesis route is as follows.,24621-61-2

p-Toluenesulfonyl chloride (381 mg, 1 .68 mmol) was dissolved in anhydrous DCM (10 mL) at RT under N2. (s)-(+)-1 ,3-butandiol (300 muIota_, 3.33 mmol) was added followed by NEt3 (450 muIota_, 3.33 mmol) and the solution stirred for 18 h. The solution was partitioned with H2O (15 mL) and extracted with DCM (3 x 10 mL), Combined organic fractions were dried by phase separator and the mixture loaded onto silica for purification by flash chromatography. The desired compound A32 was isolated as a clear oil (144 mg, 29%); -NMR (400 MHz, DMSO-c/6): delta 7.78 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H), 4.56 (d, J = 5.0 Hz, 1 H), 4.12-4.00 (m, 2H), 3.65-3.57 (m, 1 H). 2.43 (s, 3H), 1 .69-1 .54 (m, 2H), 1 .00 (d, J = 6.0 Hz, 3H).

With the complex challenges of chemical substances, we look forward to future research findings about (S)-Butane-1,3-diol

Reference£º
Patent; IMPERIAL INNOVATIONS LIMITED; SCHNEIDER, Michael; NEWTON, Gary; CHAPMAN, Katie; PERRIOR, Trevor; JARVIS, Ashley; LOW, Caroline; AQIL, Rehan; FISHER, Martin; BAYFORD, Melanie; CHAPMAN, Nicholas; MARTIN, Nicholas; REISINGER, Tifelle; NEGOITA-GIRAS, Gabriel; (260 pag.)WO2019/73253; (2019); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

The important role of 24621-61-2

With the complex challenges of chemical substances, we look forward to future research findings about (S)-Butane-1,3-diol

Name is (S)-Butane-1,3-diol, as a common heterocyclic compound, it belongs to chiral-oxygen-ligands compound, and cas is 24621-61-2, its synthesis route is as follows.,24621-61-2

Production of (S)-3-Hydroxy-1-(p-toluenesulfonyloxy)butane In the same manner as in the first step of Production Example 32, the desired compound (77.5 g) was obtained as light brown oil from (S)-1,3-butanediol (30.0 g) and p-toluenesulfonyl chloride (69.8 g). The thus-obtained oil was immediately subjected to the next step.

With the complex challenges of chemical substances, we look forward to future research findings about (S)-Butane-1,3-diol

Reference£º
Patent; Fujisawa Pharmaceutical Co., Ltd.; US6420409; (2002); B1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate