Brief introduction of 24621-61-2

With the synthetic route has been constantly updated, we look forward to future research findings about (S)-Butane-1,3-diol,belong chiral-oxygen-ligands compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO7,mainly used in chemical industry, its synthesis route is as follows.

e) (S)-4-Triisopropylsilanvloxv-butan-2-olTriethylamine (1.173 g) is added dropwise to a solution of 2.246 g triisopropylchlorosilaneand 1 g (S)-(+)-1,3-butanediol in 15 ml of dry tetrahydrofuran. The mixture is stirred for 48hours at room temperature, then is diluted with 400 ml of tert-butyl methyl ether and washedrespectively with 30 mM N HCI, 50 ml water and 50 ml of brine. The organic phase is dried(sodium sulphate), filtered and evaporated to dryness. The residue is purified by means offlash column chromatography (SiO2 60F) to provide the title compound as a colorless oil.Rf = 0.31 (EtOAc- heptane 1:5).

With the synthetic route has been constantly updated, we look forward to future research findings about (S)-Butane-1,3-diol,belong chiral-oxygen-ligands compound

Reference£º
Patent; SPEEDEL EXPERIMENTA AG; WO2006/5741; (2006); A2;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Application of 24621-61-2

As the rapid development of chemical substances, we look forward to future research findings about 24621-61-2

A common heterocyclic compound, the chiral-oxygen-ligands compound, name is (S)-Butane-1,3-diol,cas is 24621-61-2, mainly used in chemical industry, its synthesis route is as follows.

Example 4 Synthesis of Maytansinoid 4k,l (d) S-1,3-Di-O-p-toluenesulfonyl-butane 22: A solution of S-(-)-1,3-butanediol (21, 2.00 g (22.22 mmol) in a mixture of dry pyridine (40 mL) and dry toluene (60 mL) was treated with p-toluenesulfonyl chloride (12.70 g, 66.84 mmol) under argon at 0 C. After stirring at 0 C. for 5 min. followed by stirring at room temperature for 2 h, the mixture was evaporated under vacuum. The residue was redissolved in ethyl acetate, washed with 0.1 M aqueous NaHCO3, and saturated NaCl. The organic layer was separated, dried over MgSO4, filtered and evaporated. The residue was purified by chromatography over silica gel, eluding with 1:2 ethyl acetate/hexane to give 6.25 g (71%) of the title product 22 Rf=0.40 (1:1 EtOAc/hexane); 1H NMR (CDCl3) 7.76 (dd, 4H, J=1.0, 8.0 Hz), 7.35 (dt, 4H, J=0.4, 8.0+8.0 Hz), 4.70 (m, 1H), 4.03 (m, 1H), 3.94 (m, 1H), 2.46 (s, 6H), 1.92 (m, 2H), 1.26 (d, 3H, J=6.3 Hz); 13C NMR 145.17, 133.00, 130.11, 128.12, 127.91, 76.28, 66.21, 36.08, 21.86, 21.06; MS: 420.99 (M+Na)+.

As the rapid development of chemical substances, we look forward to future research findings about 24621-61-2

Reference£º
Patent; IMMUNOGEN, INC.; US2004/235840; (2004); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Application of 1,1-Dioxo-isothiazolidine

As the rapid development of chemical substances, we look forward to future research findings about 19132-06-0

A common heterocyclic compound, the chiral-oxygen-ligands compound, name is (2S,3S)-Butane-2,3-diol,cas is 19132-06-0, mainly used in chemical industry, its synthesis route is as follows.

To a 500-mL, 3-necked round-bottomed flask (equipped with a water- cooled reflux condenser and an HCI trap) was added (2s,3s)-(-f-)-2.3-butanediol (Aldrich, Milwaukee Wisconsin)(1500 nil, 166 mniol) and CCI4 (120 ml). Thionyl chloride. reagentplus (14.57 ml, 200 mmoi) was then added drop wise viaa syringe over a period of 20 minutes and the resulting mixture was heated to98 C for 45 minutes, then it was allowed to cool to room temperature. Rf ofintermediate == 0.42 eluting with 50% EtOAc in heptanes; use KMNO4 to visualizecompound, The reaction mixture was then cooled in an ice-water bath. MeCN(120 mL) and water (150 rnL) were added followed by ruthenium(111) chloride(0.035g. 0.166 nunol). Sodium periodate (53.4 g, 250 rnmol) was then addedslowly portion wise over 30 minutes. The resulting biphasic brown mixture was stirred vigorously whie allowed to reach room temperature for a period of 1.5 hour (internal temperature never increased above room temperature). TLC (50% EtOAc in heptanes) showed complete conversion. The crude mixture was thenpoured into ice water and extracted twice with 300 ml of diethyl ether. The combined organic layers were washed once with 200 ml of saturated sodium bicarbonate, washed once with 200 nil of brine, dried over sodium sulfate and concentrated by rotary evaporation to give (4S.5 S)-4,5-dimethyi- 1,3,2- dioxathiolane 2,2-dioxide (21.2 g, 139 mmoi) as a red oil.

As the rapid development of chemical substances, we look forward to future research findings about 19132-06-0

Reference£º
Patent; AMGEN INC.; BROWN, Sean P.; BEDKE, David Karl; DEGRAFFENREID, Michael R.; FU, Jiasheng; LI, Zhihong; GONZALEZ LOPEZ DE TURISO, Felix; GONZALEZ BUENROSTRO, Ana; GRIBBLE, Jr., Michael W.; JOHNSON, Michael G.; KOHN, Todd J.; LI, Kexue; LI, Yunxiao; LIZARZABURU, Mike Elias; REW, Yosup; TAYGERLY, Joshua; WANG, Yingcai; YAN, Xuelei; YU, Ming; ZHU, Jiang; ZANCANELLA, Manuel; JIAO, Xian Yun; ZHU, Liusheng; WANG, Xianghong; MEDINA, Julio C.; DUQUETTE, Jason A.; HOUZE, Jonathan B.; VIMOLRATANA, Marc; CARDOZO, Mario G.; CHENG, Alan C.; (2426 pag.)WO2017/147410; (2017); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Application of Copper(II) trifluoromethanesulfonate

As the rapid development of chemical substances, we look forward to future research findings about 4254-15-3

A common heterocyclic compound, the chiral-oxygen-ligands compound, name is (S)-Propane-1,2-diol,cas is 4254-15-3, mainly used in chemical industry, its synthesis route is as follows.

Example 18C N-[(2Z)-3-butyl[1,3]thiazolo[4,5-c]pyridin-2(3H)-ylidene]-2-{[(2S)-2-hydroxypropyl]oxy}-5-(trifluoromethyl)benzamide (S)-propane-1,2-diol (52 mg, 0.68 mmol) in THF (1 mL) was treated with NaH (60percent dispersion; 27 mg, 0.68 mmol) at room temperature for 20 minutes. The mixture was cooled to 0¡ã C. and a solution of Example 18B (90 mg, 0.23 mmol) in THF (1 mL) was added. The mixture was allowed to warm to room temperature, and stirred for 4 hours. The mixture was diluted with saturated aqueous NaHCO3 (20 mL) and extracted with ethyl acetate (2.x.30 mL). The combined organic extracts were dried over anhydrous Na2SO4, filtered, and concentrated. The residue was purified by column chromatography using an Analogix.(R). Intelliflash280.(TM). (SiO2, 0-100percent ethyl acetate in hexanes) to afford 19 mg (19percent) of the title compound. 1H NMR (500 MHz, CDCl3) delta ppm 1.04 (t, J=7.48 Hz, 3H) 1.28 (d, J=6.41 Hz, 3H) 1.47-1.59 (m, 2H) 1.88-1.98 (m, 2H) 3.87 (t, J=8.85 Hz, 1H) 4.21-4.31 (m, 1H) 4.35 (dd, J=9.15, 2.75 Hz, 1H) 4.51-4.59 (m, 2H) 7.12 (d, J=8.85 Hz, 1H) 7.72 (dd, J=8.54, 2.14 Hz, 2H) 8.51 (d, J=1.83 Hz, 2H) 8.75 (s, 1H); MS (DCI/NH3) m/z 454 (M+H)+.

As the rapid development of chemical substances, we look forward to future research findings about 4254-15-3

Reference£º
Patent; ABBOTT LABORATORIES; US2011/144165; (2011); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Application of Cuprouschloride

With the rapid development of chemical substances, we look forward to future research findings about 4254-15-3

The chiral-oxygen-ligands compound, cas is 4254-15-3 name is (S)-Propane-1,2-diol, mainly used in chemical industry, its synthesis route is as follows.

Triethylamine was added to methylene chloride solution of (2S)-propane-1,2-diol, and then methylene chloride solution of p-toluenesulfonyl chloride was added thereto at -20C and stirred at room temperature for 18 hours to obtain (2S)-2-hydroxypropyl-4-methylbenzene sulfonate. MS(+): 231

With the rapid development of chemical substances, we look forward to future research findings about 4254-15-3

Reference£º
Patent; Astellas Pharma Inc.; EP1619185; (2006); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Analyzing the synthesis route of 24621-61-2

With the synthetic route has been constantly updated, we look forward to future research findings about (S)-Butane-1,3-diol,belong chiral-oxygen-ligands compound

As a common heterocyclic compound, it belong chiral-oxygen-ligands compound,(S)-Butane-1,3-diol,24621-61-2,Molecular formula: C4H10O2,mainly used in chemical industry, its synthesis route is as follows.

(S)-(+)-Butane-1 ,3-diol (3.00 mmol, 0.270 g) was added to a stirred solution of imidazole (5.99 mmol, 0.41 g) and tert-butyldimethylsilyl chloride (3.00 mmol, 0.45 g) at room temperature. After six hours at room temperature water (50 mL) was added and extracted twice with dichloromethane (20 mL). The combined organic extracts were washed with brine, dried (sodium sulfate) and concentrated in vacuo to yield (S)-4- (tert-butyldimethylsilyloxy)butan-2-ol (0.654 g).

With the synthetic route has been constantly updated, we look forward to future research findings about (S)-Butane-1,3-diol,belong chiral-oxygen-ligands compound

Reference£º
Patent; N.V. ORGANON; MAN de,, Adrianus Petrus Antonius; REWINKEL,, Johannes Bernardus Maria; JANS,, Christiaan Gerardus Johannes Maria; RAAIJMAKERS,, Hans Cornelis Andreas; WIJKMANS,, Jacobus Cornelis Henricus Maria; WO2011/95556; (2011); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Analyzing the synthesis route of 4254-15-3

With the synthetic route has been constantly updated, we look forward to future research findings about (S)-Propane-1,2-diol,belong chiral-oxygen-ligands compound

As a common heterocyclic compound, it belong chiral-oxygen-ligands compound,(S)-Propane-1,2-diol,4254-15-3,Molecular formula: C3H8O2,mainly used in chemical industry, its synthesis route is as follows.

To a stirred solution of (A)-propane-l,2-diol (5 g, 65.7 mmol) in anhydrous DCM (40 mL) at 0 C, was added imidazole (4.47 g, 65.7 mmol), followed by TBDMS-C1 (10.89 g, 72.3 mmol). After being stirred at room temperature for 4 h, the reaction mixture was cooled to 0C, and partitioned between sodium bicarbonate solution (50 ml) and DCM (200 mL). The organic layer was washed with EhO, and saturated NaCl solution, dried over anhydrous Na2S04, filtered and concentrated under reduced pressure fV)- l -((/tW-butyl dimethyl si lyl)oxy)propan-2-ol ^2 g, 63.0 mmol, 96% ) as colourless oil. NMR (400 MHz, chloroform-^ d ppm 3.73 – 3.88 (m, 1H), 3.51 – 3.65 (m, 1H), 3.29 – 3.46 (m, 1H), 2.36 – 2.56 (m, 1H), 1.12 (d, J=6.53 Hz, 3H), 0.90 – 0.96 (m, 9H), 0.06 – 0.13 (m, 6H).

With the synthetic route has been constantly updated, we look forward to future research findings about (S)-Propane-1,2-diol,belong chiral-oxygen-ligands compound

Reference£º
Patent; BRISTOL-MYERS SQUIBB COMPANY; BALOG, James Aaron; SEITZ, Steven P.; WILLIAMS, David K.; ANDAPPAN MURUGAIAH SUBBAIAH, Murugaiah; (191 pag.)WO2019/136112; (2019); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Analyzing the synthesis route of 24621-61-2

With the synthetic route has been constantly updated, we look forward to future research findings about (S)-Butane-1,3-diol,belong chiral-oxygen-ligands compound

As a common heterocyclic compound, it belong chiral-oxygen-ligands compound,(S)-Butane-1,3-diol,24621-61-2,Molecular formula: C4H10O2,mainly used in chemical industry, its synthesis route is as follows.

EXAMPLE INEL SynthesisPreparation of (3S)-1-p-Toluenesulfonyloxy-3-triethylsilyloxy-butane (2); To a stirred solution of the (S)-(+)-1,3-butanediol 1 (1 g, 11.1 mmol), DMAP (30 mg, 0.25 mmol) and Et3N (4.6 mL, 3.33 g, 33 mmol) in anhydrous methylene chloride (20 mL)p-toluenesulfonyl chloride (2.54 g, 13.3 mmol) was added at 0 C. The reaction mixture was stirred at 4 C. for 22 h. Methylene chloride was added and the mixture was washed with water, dried (Na2SO4) and concentrated under reduced pressure. A residue was chromatographed on silica gel with hexane/ethyl acetate (8:2, then 1:1) to afford the tosylate (2.31 g, 85% yield) as colorless oil.To a stirred solution of the tosylate (2.31 g, 9.5 mmol) and 2,6-lutidine (1.2 mL, 1.12 g, 10.5 mmol) in anhydrous methylene chloride (15 mL) triethylsilyl trifluoromethanesulfonate (2.1 mL, 2.51 g, 9.5 mmol) was added at -50 C. The reaction mixture was allowed to warm to room temperature (4 h) and stirring was continued for additional 20 h. Methylene chloride was added and the mixture was washed with water, dried (Na2SO4) and concentrated under reduced pressure. A residue was chromatographed on silica gel with hexane/ethyl acetate (97:3) to afford the product 2 (2.71 g, 80% yield) as a colorless oil:[alpha]D+18.0 (c 2.38, CHCl3); 1H NMR (400 MHz, CDCl3) delta7.77 (2H, d, J=8.2 Hz, o-HTs), 7.33 (2H, d, J=8.2 Hz, m-HTs), 4.10 (2H, t, J=6.1 Hz, 1-H2), 3.90 (1H, m, 3-H), 2.43 (3H, s, McTs), 1.72 (2H, m, 2-H2), 1.10 (3H, d, J=6.2 Hz, 4-H3), 0.88 (9H, t, J=8.0 Hz, 3¡ÁSiCH2CH3), 0.50 (6H, q, J=8.0 Hz, 3¡ÁSiCH2CH3); 13C NMR (100 MHz) delta 144.62 (s, p-CTs), 133.03 (s, i-CTs), 129.72 (d, m-CTs), 127.82 (d, o-CTs), 67.78 (t, C-1), 64.46 (d, C-3), 38.47 (t, C-2), 23.82 (q, C-4), 21.52 (q, MeTs), 6.71 (q, SiCH2CH3), 4.77 (t, SiCH2CH3); MS (EI) m/z 359 (5, MH+), 329 (87, M+ -C2H5), 259 (100), 233 (54), 197 (50), 179 (74), 163 (40), 149 (48), 135 (38), 115 (53), 91 (71); exact mass calculated for C15H25O4SSi (M+ -C2H5) 329.1243, found 329.1239.

With the synthetic route has been constantly updated, we look forward to future research findings about (S)-Butane-1,3-diol,belong chiral-oxygen-ligands compound

Reference£º
Patent; WISCONSIN ALUMNI RESEARCH FOUNDATION; US2007/191316; (2007); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Analyzing the synthesis route of 4254-15-3

With the synthetic route has been constantly updated, we look forward to future research findings about (S)-Propane-1,2-diol,belong chiral-oxygen-ligands compound

As a common heterocyclic compound, it belong chiral-oxygen-ligands compound,(S)-Propane-1,2-diol,4254-15-3,Molecular formula: C3H8O2,mainly used in chemical industry, its synthesis route is as follows.

To a stirred solution of 68 (S)-2-propanediol (1.00g, 13.14mmol) in 14 dichloromethane/69 pyridine (10:10 V/V) at -25C under argon was added dropwise 70 p-toluenesulfonyl chloride (2.51g, 13.14mmol) dissolved in 10mL of CH2Cl2 over a period of 2h. The mixture was stirred at -25C for 4h and then at room temperature for further 2h. After the reaction was completed, 30mL of CH2Cl2 were added and the mixture was shaken successively with ice-cold water, 1M 10mL 71 aqueous HCl, 15mL 72 water, saturated NaHCO3, and water, respectively. The organic phase was dried over MgSO4 and filtered and the solvent was removed under reduced pressure. The residue was purified by chromatography over silica gel using toluene/EtOAc (5/1) to give 73 product (1.70g, 56%) as white crystals. M.p: 33-35C, [alpha]D25=-12.05 (c 1, CHCl3). 1H NMR (CDCI3, ppm): delta 7.80 (d, 2H, J=8.0Hz, of OTs), 7.36 (d, 2H, J=8.0Hz, of OTs), 3.97-4.05 (m, 2H, -CHCH3-+CH2OTs (a)), 3.83-3.88 (m, 1H, CH2OTs (b)), 2.45 (s, 3H, -CH3 of OTs), 2.39 (s, 1H, OH), 1.15 (d, J=6.4Hz, 3H, -CHCH3), assignment was based on the 1H-13C HETCOR and 1H-1H COSY spectra

With the synthetic route has been constantly updated, we look forward to future research findings about (S)-Propane-1,2-diol,belong chiral-oxygen-ligands compound

Reference£º
Article; Meric, Nermin; Kayan, Cezmi; Guerbuez, Nevin; Karakaplan, Mehmet; Binbay, Nil Ertekin; Aydemir, Murat; Tetrahedron Asymmetry; vol. 28; 12; (2017); p. 1739 – 1749;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Analyzing the synthesis route of 24621-61-2

With the synthetic route has been constantly updated, we look forward to future research findings about (S)-Butane-1,3-diol,belong chiral-oxygen-ligands compound

As a common heterocyclic compound, it belong chiral-oxygen-ligands compound,(S)-Butane-1,3-diol,24621-61-2,Molecular formula: C4H10O2,mainly used in chemical industry, its synthesis route is as follows.

To a solution of commercial available (s)-3-hydroxy butanol (10 g, Aldrich) in 50 mL of DMF, TsOH (20 mg, catalytic) and MeOPhCH (OMe) 2 (24 g) were added. After 3h at 35 C on a rotovap with slight vacuum, it was cooled and quenched with aq. Sat. NaHC03. The mixture was extracted with EtOAc (3x). The organic layers were washed with brine (2x), dried and concentrated. The crude product was evaporated with toluene (3x). [0230] The crude product was dissolved in 700 mL of CH2CI2. At 0 C, DIBAL-H solution (200 mL, 1.0 M, excess) was added. The reaction was warmed to room temperature overnight. Then it was quenched with methanol (50 mL), sat. Na2S04 at 0 C. The mixture was diluted with Et20 (1. 5L). After stirred for 5h, it was filtered through a pad of celite. The filtrate was concentrated to give an oil. The oil was purified on silica gel with Hexanes/EtOAc, 10: 1,6 : 1,3 : 1, and 1: 1 to give 24 g of desired product, 343-YW-203

With the synthetic route has been constantly updated, we look forward to future research findings about (S)-Butane-1,3-diol,belong chiral-oxygen-ligands compound

Reference£º
Patent; EISAI CO. LTD.; WO2003/76424; (2003); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate