Downstream synthetic route of 538-58-9

The synthetic route of 538-58-9 has been constantly updated, and we look forward to future research findings.

538-58-9, 1,5-Diphenylpenta-1,4-dien-3-one is a chiral-oxygen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: 9-Amino(9-deoxy)-epi-quinine (6.5 mg, 0.02 mmol), divinyl ketone 1 (0.1 mmol), nitromethane (262 muL, 3.0 mmol), Proton-sponge (4.3 mg, 0.02 mmol) and benzoic acid (4.9 mg, 0.04 mmol) were dissolved in chlorobenzene (238muL). After stirred at 40 oC for 144 h, the reaction mixture was purified by flash chromatography on silica gel (EtOAc/petroleum ether).

The synthetic route of 538-58-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Yao, Yongqi; Liu, Yingying; Ye, Ling; Chen, Feng; Li, Xinying; Zhao, Zhigang; Li, Xuefeng; Tetrahedron; vol. 73; 16; (2017); p. 2311 – 2315;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Downstream synthetic route of 24621-61-2

The synthetic route of 24621-61-2 has been constantly updated, and we look forward to future research findings.

24621-61-2, (S)-Butane-1,3-diol is a chiral-oxygen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

(Example 5-1) Under ice cooling, to a dichloromethane solution (20.0 ml) of (S)-1,3-butanediol (519 mg) were added triethylamine (1.04 ml) and tert-butylchlorodiphenylsilane (1.63 ml), followed by stirring at room temperature overnight. The reaction solution was poured into a saturated aqueous ammonium chloride solution, and extracted with ethyl acetate. The organic layer was washed with saturated sodium chloride solution, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The resulting residue was purified by silica gel chromatography to afford (2S)-4-{[tert-butyl(diphenyl)silyl]oxy}butan-2-ol (1.69 g). 1H NMR(400 MHz,CDCl3) delta: 1.05 (9H, s), 1.22 (3H, d, J = 6.3 Hz), 1.58-1.68 (1H, m), 1.69-1.81 (1H, m), 3.31 (1H, d, J = 2.0 Hz), 3.80-3.91 (2H, m), 4.07-4.15 (1H, m), 7.37-7.50 (6H, m), 7.69 (4H, d, J = 6.2 Hz).

The synthetic route of 24621-61-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Daiichi Sankyo Company, Limited; EP2471792; (2012); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Simple exploration of 24621-61-2

As the paragraph descriping shows that 24621-61-2 is playing an increasingly important role.

24621-61-2, (S)-Butane-1,3-diol is a chiral-oxygen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Example 1; Preparation of (3S)-1-p-Toluenesulfonyloxy-3-triethylsilyloxy-butane (2); To a stirred solution of the (S)-(+)-1,3-butanediol 1 (1 g, 11.1 mmol), DMAP (30 mg, 0.25 mmol) and Et3N (4.6 mL, 3.33 g, 33 mmol) in anhydrous methylene chloride (20 mL) p-toluenesulfonyl chloride (2.54 g, 13.3 mmol) was added at 0 C. The reaction mixture was stirred at 4 C. for 22 h. Methylene chloride was added and the mixture was washed with water, dried (Na2SO4) and concentrated under reduced pressure. A residue was chromatographed on silica gel with hexane/ethyl acetate (8:2, then 1:1) to afford the tosylate (2.31 g, 85% yield) as a colorless oil.

As the paragraph descriping shows that 24621-61-2 is playing an increasingly important role.

Reference£º
Patent; DeLuca, Hector F.; Clagett-Dame, Margaret; Plum, Lori A.; Chiellini, Grazia; Grzywacz, Pawel; US2008/81799; (2008); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

New learning discoveries about 24621-61-2

The synthetic route of 24621-61-2 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.24621-61-2,(S)-Butane-1,3-diol,as a common compound, the synthetic route is as follows.

e) (S)-4-Triisopropylsilanvloxv-butan-2-olTriethylamine (1.173 g) is added dropwise to a solution of 2.246 g triisopropylchlorosilaneand 1 g (S)-(+)-1,3-butanediol in 15 ml of dry tetrahydrofuran. The mixture is stirred for 48hours at room temperature, then is diluted with 400 ml of tert-butyl methyl ether and washedrespectively with 30 mM N HCI, 50 ml water and 50 ml of brine. The organic phase is dried(sodium sulphate), filtered and evaporated to dryness. The residue is purified by means offlash column chromatography (SiO2 60F) to provide the title compound as a colorless oil.Rf = 0.31 (EtOAc- heptane 1:5).

The synthetic route of 24621-61-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; SPEEDEL EXPERIMENTA AG; WO2006/5741; (2006); A2;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Simple exploration of 538-58-9

As the paragraph descriping shows that 538-58-9 is playing an increasingly important role.

538-58-9, 1,5-Diphenylpenta-1,4-dien-3-one is a chiral-oxygen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Step 1. Under a nitrogen atmosphere, add 8 L of absolute ethanol and 0.112 kg of anhydrous sodium acetate to a glass reactor heated in a water bath.When the system temperature was heated to 68 C, 0.92 kg of dibenzylideneacetone obtained in Example 1 was added.After stirring for 30 minutes, add ice to the water bath heater to quickly cool the system down to 60 C.Then, 0.2 kg of palladium dichloride prepared in Example 1 was added and reacted at 60 C for 2 hours.Funnel filtration gave bis (dibenzylideneacetone) palladium (0);

As the paragraph descriping shows that 538-58-9 is playing an increasingly important role.

Reference£º
Patent; Xi’an Kaili New Materials Co., Ltd.; Zhang Jielan; Chen Dan; Yan Pandun; Xiao Dawei; Li Yuefeng; Wan Kerou; (6 pag.)CN110256503; (2019); A;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some tips on 24621-61-2

As the paragraph descriping shows that 24621-61-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.24621-61-2,(S)-Butane-1,3-diol,as a common compound, the synthetic route is as follows.

Example 1 Preparation of (3S)-1-p-Toluenesulfonyloxy-3-triethylsilyloxy-butane (2)To a stirred solution of the (S)-(+)-1,3-butanediol 1 (1 g, 11.1 mmol), DMAP (30 mg, 0.25 mmol) and Et3N (4.6 mL, 3.33 g, 33 mmol) in anhydrous methylene chloride (20 mL) p-toluenesulfonyl chloride (2.54 g, 13.3 mmol) was added at 0 C. The reaction mixture was stirred at 4 C. for 22 h. Methylene chloride was added and the mixture was washed with water, dried (Na2SO4) and concentrated under reduced pressure. A residue was chromatographed on silica gel with hexane/ethyl acetate (8:2, then 1:1) to afford the tosylate (2.31 g, 85% yield) as a colorless oil.To a stirred solution of the tosylate (2.31 g, 9.5 mmol) and 2,6-lutidine (1.2 mL, 1.12 g, 10.5 mmol) in anhydrous methylene chloride (15 mL) triethylsilyl trifluoromethanesulfonate (2.1 mL, 2.51 g, 9.5 mmol) was added at -50 C. The reaction mixture was allowed to warm to room temperature (4 h) and stirring was continued for additional 20 h. Methylene chloride was added and the mixture was washed with water, dried (Na2SO4) and concentrated under reduced pressure. A residue was chromatographed on silica gel with hexane/ethyl acetate (97:3) to afford the product 2 (2.71 g, 80% yield) as a colorless oil:[alpha]D+18.0 (c 2.38, CHCl3); 1H NMR (400 MHz, CDCl3) delta 7.77 (2H, d, J=8.2 Hz, o-HTs), 7.33 (2H, d, J=8.2 Hz, m-HTs), 4.10 (2H, t, J=6.1 Hz, 1-H2), 3.90 (1H, m, 3-H), 2.43 (3H, s, MeTs), 1.72 (2H, m, 2-H2), 1.10 (3H, d, J=6.2 Hz, 4-H3), 0.88 (9H, t, J=8.0 Hz, 3¡ÁSiCH2CH3), 0.50 (6H, q, J=8.0 Hz, 3¡ÁSiCH2CH3); 13C NMR (100 MHz) delta 144.62 (s, p-CTs), 133.03 (s, i-CTs), 129.72 (d, m-CTs), 127.82 (d, o-CTs), 67.78 (t, C-1), 64.46 (d, C-3), 38.47 (t, C-2), 23.82 (q, C-4), 21.52 (q, MeTs), 6.71 (q, SiCH2CH3), 4.77 (t, SiCH2CH3); MS (EI) m/z 359 (5, MH+), 329 (87, M+-C2H5), 259 (100), 233 (54), 197 (50), 179 (74), 163 (40), 149 (48), 135 (38), 115 (53), 91 (71); exact mass calculated for C15H25O4SSi (M+-C2H5) 329.1243, found 329.1239.

As the paragraph descriping shows that 24621-61-2 is playing an increasingly important role.

Reference£º
Patent; DeLuca, Hector F.; Clagett-Dame, Margaret; Plum, Lori A.; Chiellini, Grazia; Grzywacz, Pawel; US2009/170821; (2009); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some tips on 4254-15-3

As the paragraph descriping shows that 4254-15-3 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.4254-15-3,(S)-Propane-1,2-diol,as a common compound, the synthetic route is as follows.

To separate the propylene glycol enantiomers on a chiral gas chromatography column, they were derivatized with acetic anhydride to the methyl esters. Into a small vial equipped with a Teflon lined stir bar was added 1 mL diethyl ether and equal amounts (5-10 drops) propylene glycol, pyridine, and acetic anhydride. The reaction mixture was stirred 3 hours at room temperature, washed with deionized 0 (3 x 1 mL) and dried over Na2S04. The derivatized product was then analyzed via gas chromatography. The diacetate was obtained with an ee of 97percent when (R,i?)-(Cl-salcy)CoN03 was used, and with an ee of 96percent when (5,S)-(Cl-salcy)CoN03 was used, indicating that both enantiomers produced highly regioregular poly(propylene succinate).

As the paragraph descriping shows that 4254-15-3 is playing an increasingly important role.

Reference£º
Patent; CORNELL UNIVERSITY; COATES, Geoffrey; WHITEHEAD, Julie; (60 pag.)WO2016/25675; (2016); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Simple exploration of 4254-15-3

As the paragraph descriping shows that 4254-15-3 is playing an increasingly important role.

4254-15-3, (S)-Propane-1,2-diol is a chiral-oxygen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a yellow foamy solid 4 (131.77 g, 295.11 mmol) was added (S)-(+)-1,2-propanediol (296.0 ml) and purified water (866.0 ml).Stir and slowly cool after dissolving.Stirring crystallized, filtered and drained to give a crude product 5;The crude product 5 was directly recrystallized from methyl tert-butyl ether (900 ml) without drying.After filtering to get a fine 5;Without drying, recrystallize twice with methyl tert-butyl ether (900 ml) and filter.The filter cake is washed twice with methyl tert-butyl ether.After drying, it is dried in a drying oven at 45-50C.The second boutique 5 (116.37g, 231.22mmol),HPLC purity 99.94% [HPLC normalization method:Column Agilent SB-C18 (250¡Á4.6mm 5mum);The mobile phase is mobile phase A with acetonitrile-water-trifluoroacetic acid (30:70:0.025).The mobile phase B was acetonitrile-water-trifluoroacetic acid (90:10:0.025).Gradient elution (0?20 min: A 100%?70%, 20?40 min: A 70%?10%, 40?50 min: A 10%, 50?50.1 min:A 100%, 50.1 ? 60min: A 100%,) detection wavelength 220nm;Column temperature 30C; flow rate, 1.0 ml/min], yield 78.35%.

As the paragraph descriping shows that 4254-15-3 is playing an increasingly important role.

Reference£º
Patent; Shanghai Modern Pharmaceutical Co., Ltd.; Zhang Guang; Shen Gang; Zou Lingyan; Fu Min; Wu Miaomiao; (13 pag.)CN107488156; (2017); A;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Some tips on 24621-61-2

As the paragraph descriping shows that 24621-61-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.24621-61-2,(S)-Butane-1,3-diol,as a common compound, the synthetic route is as follows.

Example 7A (2S)-4-((tert-butyl(dimethyl)silyl)oxy)-2-butanol A 0 C. solution of (S)-(+)-1,3-butanediol (2.1 g, 23.3 mmol), imidazole (1.74 g, 25.6 mmol), and N,N-dimethylformamide (1.0 mL) in dichloromethane (40 mL) was treated with tert-butyl-dimethylsilyl chloride (3.68 g, 23.3 mmol). The reaction mixture was warmed to room temperature, stirred overnight, quenched with saturated aqueous ammonium chloride and extracted with dichloromethane. The combined dichloromethane layers were dried (MgSO4), filtered and concentrated to afford of the desired product of sufficient purity for subsequent use without further purification in near quantitative yield. MS (DCI/NH3) m/z 205 (M+H)+; 1H NMR (300 MHz, CDCl3) delta3.95 (m, 1H), 3.79 (m, 2H), 3.27 (br s, 1H), 1.56 (m 2H), 1.11 (d, 3H), 0.82 (s, 9H), 0.016 (s, 6H).

As the paragraph descriping shows that 24621-61-2 is playing an increasingly important role.

Reference£º
Patent; Bennani, Youssef L.; Black, Lawrence A.; Dwight, Wesley J.; Faghih, Ramin; Gentles, Robert G.; Liu, Huaqing; Phelan, Kathleen M.; Vasudevan, Anil; Zhang, Henry Q.; US2001/49367; (2001); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate

Downstream synthetic route of 19132-06-0

The synthetic route of 19132-06-0 has been constantly updated, and we look forward to future research findings.

19132-06-0, (2S,3S)-Butane-2,3-diol is a chiral-oxygen-ligands compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a 500-mL, 3-necked round-bottomed flask (equipped with a water- cooled reflux condenser and an HCI trap) was added (2s,3s)-(-f-)-2.3-butanediol (Aldrich, Milwaukee Wisconsin)(1500 nil, 166 mniol) and CCI4 (120 ml). Thionyl chloride. reagentplus (14.57 ml, 200 mmoi) was then added drop wise viaa syringe over a period of 20 minutes and the resulting mixture was heated to98 C for 45 minutes, then it was allowed to cool to room temperature. Rf ofintermediate == 0.42 eluting with 50% EtOAc in heptanes; use KMNO4 to visualizecompound, The reaction mixture was then cooled in an ice-water bath. MeCN(120 mL) and water (150 rnL) were added followed by ruthenium(111) chloride(0.035g. 0.166 nunol). Sodium periodate (53.4 g, 250 rnmol) was then addedslowly portion wise over 30 minutes. The resulting biphasic brown mixture was stirred vigorously whie allowed to reach room temperature for a period of 1.5 hour (internal temperature never increased above room temperature). TLC (50% EtOAc in heptanes) showed complete conversion. The crude mixture was thenpoured into ice water and extracted twice with 300 ml of diethyl ether. The combined organic layers were washed once with 200 ml of saturated sodium bicarbonate, washed once with 200 nil of brine, dried over sodium sulfate and concentrated by rotary evaporation to give (4S.5 S)-4,5-dimethyi- 1,3,2- dioxathiolane 2,2-dioxide (21.2 g, 139 mmoi) as a red oil.

The synthetic route of 19132-06-0 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; AMGEN INC.; BROWN, Sean P.; BEDKE, David Karl; DEGRAFFENREID, Michael R.; FU, Jiasheng; LI, Zhihong; GONZALEZ LOPEZ DE TURISO, Felix; GONZALEZ BUENROSTRO, Ana; GRIBBLE, Jr., Michael W.; JOHNSON, Michael G.; KOHN, Todd J.; LI, Kexue; LI, Yunxiao; LIZARZABURU, Mike Elias; REW, Yosup; TAYGERLY, Joshua; WANG, Yingcai; YAN, Xuelei; YU, Ming; ZHU, Jiang; ZANCANELLA, Manuel; JIAO, Xian Yun; ZHU, Liusheng; WANG, Xianghong; MEDINA, Julio C.; DUQUETTE, Jason A.; HOUZE, Jonathan B.; VIMOLRATANA, Marc; CARDOZO, Mario G.; CHENG, Alan C.; (2426 pag.)WO2017/147410; (2017); A1;,
Synthesis and Crystal Structure of a Chiral?C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis
Chiral lanthanide(III) complexes of sulphur¨Cnitrogen¨Coxygen ligand derived from aminothiourea and sodium?D-camphor-¦Â-sulfonate