Chemical engineers ensure the efficiency and safety of chemical processes, adapt the chemical make-up of products to meet environmental or economic needs, and apply new technologies to improve existing processes. Computed Properties of C17H14O,
2,5-Cyclohexadienyl-substituted aryl or vinylic iodides have been reacted with carbon nucleophiles (diethyl malonate and 2-methyl-1,3- cyclohexanedione), nitrogen nucleophiles (morpholine, potassium phthalimide, N-benzyl tosylamide, di-tert-butyl iminodicarboxylate, lithium azide, and anilines), a sulfur nucleophile (sodium benzenesulfinate), and oxygen nucleophiles (lithium acetate and phenols) to afford products of cyclization and subsequent cross-coupling in good to excellent yields. In most cases, this process is highly diastereoselective. The reaction is believed to proceed via (1) oxidative addition of the aryl or vinylic iodide to Pd(0), (2) organopalladium addition to one of the carbon-carbon double bonds, (3) palladium migration along the carbon chain on the same face of the ring to form a pi-allylpalladium intermediate, and (4) nucleophilic displacement of the palladium.
Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data. Computed Properties of C17H14O, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 538-58-9, in my other articles.
Reference:
Synthesis and Crystal Structure of a Chiral C3-Symmetric Oxygen Tripodal Ligand and Its Applications to Asymmetric Catalysis,
Chiral lanthanide(III) complexes of sulphur–nitrogen–oxygen ligand derived from aminothiourea and sodium D-camphor-β-sulfonate